141 research outputs found

    The sudden change phenomenon of quantum discord

    Full text link
    Even if the parameters determining a system's state are varied smoothly, the behavior of quantum correlations alike to quantum discord, and of its classical counterparts, can be very peculiar, with the appearance of non-analyticities in its rate of change. Here we review this sudden change phenomenon (SCP) discussing some important points related to it: Its uncovering, interpretations, and experimental verifications, its use in the context of the emergence of the pointer basis in a quantum measurement process, its appearance and universality under Markovian and non-Markovian dynamics, its theoretical and experimental investigation in some other physical scenarios, and the related phenomenon of double sudden change of trace distance discord. Several open questions are identified, and we envisage that in answering them we will gain significant further insight about the relation between the SCP and the symmetry-geometric aspects of the quantum state space.Comment: Lectures on General Quantum Correlations and their Applications, F. F. Fanchini, D. O. Soares Pinto, and G. Adesso (Eds.), Springer (2017), pp 309-33

    Identification and Characterization of Alternative Promoters, Transcripts and Protein Isoforms of Zebrafish R2 Gene

    Get PDF
    Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates. Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish. Three functional R2 promoters were identified to generate six transcript variants with distinct 5′ termini. The proximal promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic stress

    Widespread Hypomethylation Occurs Early and Synergizes with Gene Amplification during Esophageal Carcinogenesis

    Get PDF
    Although a combination of genomic and epigenetic alterations are implicated in the multistep transformation of normal squamous esophageal epithelium to Barrett esophagus, dysplasia, and adenocarcinoma, the combinatorial effect of these changes is unknown. By integrating genome-wide DNA methylation, copy number, and transcriptomic datasets obtained from endoscopic biopsies of neoplastic progression within the same individual, we are uniquely able to define the molecular events associated progression of Barrett esophagus. We find that the previously reported global hypomethylation phenomenon in cancer has its origins at the earliest stages of epithelial carcinogenesis. Promoter hypomethylation synergizes with gene amplification and leads to significant upregulation of a chr4q21 chemokine cluster and other transcripts during Barrett neoplasia. In contrast, gene-specific hypermethylation is observed at a restricted number of loci and, in combination with hemi-allelic deletions, leads to downregulatation of selected transcripts during multistep progression. We also observe that epigenetic regulation during epithelial carcinogenesis is not restricted to traditionally defined “CpG islands,” but may also occur through a mechanism of differential methylation outside of these regions. Finally, validation of novel upregulated targets (CXCL1 and 3, GATA6, and DMBT1) in a larger independent panel of samples confirms the utility of integrative analysis in cancer biomarker discovery

    Chromosome microarray analysis as first-line test in pregnancies with a priori low risk for detection of submicroscopic chromosomal abnormalities

    Get PDF
    n this study, we aimed to explore the utility of chromosomal microarray analysis (CMA) in groups of pregnancies with a priori low risk for detection of submicroscopic chromosome abnormalities, usually not considered an indication for testing, in order to assess whether CMA improves the detection rate of prenatal chromosomal aberrations. A total of 3000 prenatal samples were processed in parallel using both whole-genome CMA and conventional karyotyping. The indications for prenatal testing included: advanced maternal age, maternal serum screening test abnormality, abnormal ultrasound findings, known abnormal fetal karyotype, parental anxiety, family history of a genetic condition and cell culture failure. The use of CMA resulted in an increased detection rate regardless of the indication for analysis. This was evident in high risk groups (abnormal ultrasound findings and abnormal fetal karyotype), in which the percentage of detection was 5.8% (7/120), and also in low risk groups, such as advanced maternal age (6/1118, 0.5%), and parental anxiety (11/1674, 0.7%). A total of 24 (0.8%) fetal conditions would have remained undiagnosed if only a standard karyotype had been performed. Importantly, 17 (0.6%) of such findings would have otherwise been overlooked if CMA was offered only to high risk pregnancies.The results of this study suggest that more widespread CMA testing of fetuses would result in a higher detection of clinically relevant chromosome abnormalities, even in low risk pregnancies. Our findings provide substantial evidence for the introduction of CMA as a first-line diagnostic test for all pregnant women undergoing invasive prenatal testing, regardless of risk factors

    High proportion of recurrent germline mutations in the BRCA1 gene in breast and ovarian cancer patients from the Prague area

    Get PDF
    BACKGROUND: Germline mutations in the BRCA1 and BRCA2 genes have been shown to account for the majority of hereditary breast and ovarian cancers. The purpose of our study was to estimate the incidence and spectrum of pathogenic mutations in BRCA1/2 genes in high-risk Czech families. METHODS: A total of 96 Czech families with recurrent breast and/or ovarian cancer and 55 patients considered to be at high-risk but with no reported family history of cancer were screened for mutations in the BRCA1/2 genes. The entire coding sequence of each gene was analyzed using a combination of the protein truncation test and direct DNA sequencing. RESULTS: A total of 35 mutations in the BRCA1/2 genes were identified in high-risk families (36.5%). Pathogenic mutations were found in 23.3% of breast cancer families and in 59.4% of families with the occurrence of both breast and ovarian cancer. In addition, four mutations were detected in 31 (12.9%) women with early onset breast cancer. One mutation was detected in seven (14.3%) patients affected with both a primary breast and ovarian cancer and another in three (33.3%) patients with a bilateral breast cancer. A total of 3 mutations in BRCA1 were identified among 14 (21.4%) women with a medullary breast carcinoma. Of 151 analyzed individuals, 35 (23.2%) carried a BRCA1 mutation and 9 (6.0%) a BRCA2 mutation. One novel truncating mutation was found in BRCA1 (c.1747A>T) and two in BRCA2 (c.3939delC and c.5763dupT). The 35 identified BRCA1 mutations comprised 13 different alterations. Three recurrent mutations accounted for 71.4% of unrelated individuals with detected gene alterations. The BRCA1 c.5266dupC (5382insC) was detected in 51.4% of mutation positive women. The mutations c.3700_3704del5 and c.181T>G (300T>G) contributed to 11.4% and 8.6% of pathogenic mutations, respectively. A total of eight different mutations were identified in BRCA2. The novel c.5763dupT mutation, which appeared in two unrelated families, was the only recurrent alteration of the BRCA2 gene identified in this study. CONCLUSION: Mutational analysis of BRCA1/2 genes in 151 high-risk patients characterized the spectrum of gene alterations and demonstrated the dominant role of the BRCA1 c.5266dupC allele in hereditary breast and ovarian cancer

    Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: a review

    Get PDF
    The maintenance of quality of life (QoL) in patients with high-grade glioma is an important endpoint during treatment, particularly in those with glioblastoma multiforme (GBM) given its dismal prognosis despite limited advances in standard therapy. It has proven difficult to identify new therapies that extend survival in patients with recurrent GBM, so one of the primary aims of new therapies is to reduce morbidity, restore or preserve neurologic functions, and the capacity to perform daily activities. Apart from temozolomide, cytotoxic chemotherapeutic agents do not appear to significantly impact response or survival, but produce toxicity that is likely to negatively impact QoL. New biological agents, such as bevacizumab, can induce a clinically meaningful proportion of durable responses among patients with recurrent GBM with an acceptable safety profile. Emerging evidence suggests that bevacizumab produces an improvement or preservation of neurocognitive function in GBM patients, suggestive of QoL improvement, in most poor-prognosis patients who would otherwise be expected to show a sudden and rapid deterioration in QoL

    Macoilin, a Conserved Nervous System–Specific ER Membrane Protein That Regulates Neuronal Excitability

    Get PDF
    Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O2 responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca2+ transients, at least in some neurons: in maco-1 mutants the O2-sensing neuron PQR is unable to generate a Ca2+ response to a rise in O2. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O2, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca2+ channels, also fails to disrupt Ca2+ responses in the PQR cell body to O2 stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca2+ channel α1 subunit, recapitulate the Ca2+ response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or traffic of ion channels or ion channel regulators
    corecore