1,341 research outputs found

    WISE Circumstellar Disks in the Young Sco-Cen Association

    Full text link
    We present an analysis of the WISE photometric data for 829 stars in the Sco-Cen OB2 association, using the latest high-mass membership probabilities. We detect infrared excesses associated with 135 BAF-type stars, 99 of which are secure Sco-Cen members. There is a clear increase in excess fraction with membership probability, which can be fitted linearly. We infer that 41+-5% of Sco-Cen OB2 BAF stars to have excesses, while the field star excess fraction is consistent with zero. This is the first time that the probability of non-membership has been used in the calculation of excess fractions for young stars. We do not observe any significant change in excess fraction between the three subgroups. Within our sample, we have observed that B-type association members have a significantly smaller excess fraction than A and F-type association members.Comment: 5 Pages, 3 figure, 4 tables. Complete table 1 included. Accepted to MNRAS Letter

    Long-Baseline Interferometric Multiplicity Survey of the Sco-Cen OB Association

    Full text link
    We present the first multiplicity-dedicated long baseline optical interferometric survey of the Scorpius-Centaurus-Lupus-Crux association. We used the Sydney University Stellar Interferometer to undertake a survey for new companions to 58 Sco-Cen B- type stars and have detected 24 companions at separations ranging from 7-130mas, 14 of which are new detections. Furthermore, we use a Bayesian analysis and all available information in the literature to determine the multiplicity distribution of the 58 stars in our sample, showing that the companion frequency is F = 1.35 and the mass ratio distribution is best described as a power law with exponent equal to -0.46, agreeing with previous Sco-Cen high mass work and differing significantly from lower-mass stars in Tau-Aur. Based on our analysis, we estimate that among young B-type stars in moving groups, up to 23% are apparently single stars. This has strong implications for the understanding of high-mass star formation, which requires angular momentum dispersal through some mechanism such as formation of multiple systems.Comment: 7 figures, 5 tables, accepted for publication in MNRA

    Are inner disc misalignments common? ALMA reveals an isotropic outer disc inclination distribution for young dipper stars

    Get PDF
    Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of per cent. A standard explanation is that dippers host nearly edge-on (id ≈ 70°) protoplanetary discs that allow close-in (10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and ‘broken’ discs caused by inclined (sub-)stellar or planetary companions

    Remanence effects in the electrical resistivity of spin glasses

    Get PDF
    We have measured the low temperature electrical resistivity of Ag : Mn mesoscopic spin glasses prepared by ion implantation with a concentration of 700 ppm. As expected, we observe a clear maximum in the resistivity (T ) at a temperature in good agreement with theoretical predictions. Moreover, we observe remanence effects at very weak magnetic fields for the resistivity below the freezing temperature Tsg: upon Field Cooling (fc), we observe clear deviations of (T ) as compared with the Zero Field Cooling (zfc); such deviations appear even for very small magnetic fields, typically in the Gauss range. This onset of remanence for very weak magnetic fields is reminiscent of the typical signature on magnetic susceptibility measurements of the spin glass transition for this generic glassy system

    Testing the gamma-ray burst variability/peak luminosity correlation on a Swift homogeneous sample

    Full text link
    We test the gamma-ray burst correlation between temporal variability and peak luminosity of the γ\gamma-ray profile on a homogeneous sample of 36 Swift/BAT GRBs with firm redshift determination. This is the first time that this correlation can be tested on a homogeneous data sample. The correlation is confirmed, as long as the 6 GRBs with low luminosity (<5x10^{50} erg s^{-1} in the rest-frame 100-1000 keV energy band) are ignored. We confirm that the considerable scatter of the correlation already known is not due to the combination of data from different instruments with different energy bands, but it is intrinsic to the correlation itself. Thanks to the unprecedented sensitivity of Swift/BAT, the variability/peak luminosity correlation is tested on low-luminosity GRBs. Our results show that these GRBs are definite outliers.Comment: Accepted for Publication in MNRAS. 10 pages, 5 figures, 3 table

    Are Swift gamma-ray bursts consistent with the Ghirlanda relation?

    Get PDF
    A few tight correlations linking several properties of gamma-ray bursts (GRBs), namely the spectral peak energy, the total radiated energy, and the afterglow break time, have been discovered with pre-Swift GRBs. They were used to constrain the cosmological parameters, together with type-Ia supernovae. However, the tightness of these correlations is a challenge to GRB models. We explore the effect of adding Swift bursts to the Ghirlanda and Liang-Zhang relations. Although they are both still valid, they become somewhat weakened mostly due to the presence of significant outliers, which otherwise are apparently normal GRBs so difficult to distinguish. The increased dispersion of the relations makes them less reliable for purposes of precision cosmology.Comment: Paper accepted for publication on A&A (7 pages, 2 figures). Small changes after comment

    The Factory and the Beehive III: PTFEB132.707+19.810, a Low-Mass Eclipsing Binary in Praesepe Observed by PTF and K2

    Get PDF
    Theoretical models of stars constitute a fundamental bedrock upon which much of astrophysics is built, but large swaths of model parameter space remain uncalibrated by observations. The best calibrators are eclipsing binaries in clusters, allowing measurement of masses, radii, luminosities, and temperatures, for stars of known metallicity and age. We present the discovery and detailed characterization of PTFEB132.707+19.810, a P=6.0 day eclipsing binary in the Praesepe cluster (τ\tau~600--800 Myr; [Fe/H]=0.14±\pm0.04). The system contains two late-type stars (SpTP_P=M3.5±\pm0.2; SpTS_S=M4.3±\pm0.7) with precise masses (Mp=0.3953±0.0020M_p=0.3953\pm0.0020~M⊙M_{\odot}; Ms=0.2098±0.0014M_s=0.2098\pm0.0014~M⊙M_{\odot}) and radii (Rp=0.363±0.008R_p=0.363\pm0.008~R⊙R_{\odot}; Rs=0.272±0.012R_s=0.272\pm0.012~R⊙R_{\odot}). Neither star meets the predictions of stellar evolutionary models. The primary has the expected radius, but is cooler and less luminous, while the secondary has the expected luminosity, but is cooler and substantially larger (by 20%). The system is not tidally locked or circularized. Exploiting a fortuitous 4:5 commensurability between PorbP_{orb} and Prot,primP_{rot,prim}, we demonstrate that fitting errors from the unknown spot configuration only change the inferred radii by <1--2%. We also analyze subsets of data to test the robustness of radius measurements; the radius sum is more robust to systematic errors and preferable for model comparisons. We also test plausible changes in limb darkening, and find corresponding uncertainties of ~1%. Finally, we validate our pipeline using extant data for GU Boo, finding that our independent results match previous radii to within the mutual uncertainties (2--3%). We therefore suggest that the substantial discrepancies are astrophysical; since they are larger than for old field stars, they may be tied to the intermediate age of PTFEB132.707+19.810.Comment: Accepted to ApJ; 36 pages, 19 figures, 8 tables in two-column AASTEX6 forma
    • …
    corecore