71 research outputs found

    Mental state estimation for brain-computer interfaces

    Get PDF
    Mental state estimation is potentially useful for the development of asynchronous brain-computer interfaces. In this study, four mental states have been identified and decoded from the electrocorticograms (ECoGs) of six epileptic patients, engaged in a memory reach task. A novel signal analysis technique has been applied to high-dimensional, statistically sparse ECoGs recorded by a large number of electrodes. The strength of the proposed technique lies in its ability to jointly extract spatial and temporal patterns, responsible for encoding mental state differences. As such, the technique offers a systematic way of analyzing the spatiotemporal aspects of brain information processing and may be applicable to a wide range of spatiotemporal neurophysiological signals

    Spatial selectivity in human ventrolateral prefrontal cortex

    Get PDF
    The functional organization of lateral prefrontal cortex is not well understood, and there is debate as to whether the dorsal and ventral aspects mediate distinct spatial and non-spatial functions, respectively. We show for the first time that recordings from human ventrolateral prefrontal cortex show spatial selectivity, supporting the idea that ventrolateral prefrontal cortex is involved in spatial processing. Our results also indicate that prefrontal cortex may be a source of control signals for neuroprosthetic applications

    Temporal associative processes revealed by intrusions in paired-associate recall

    Get PDF
    Although much is known about the factors that influence the acquisition and retention of individual paired associates, the existence of temporally defined associations spanning multiple pairs has not been demonstrated. We report two experiments in which subjects studied randomly paired nouns for a subsequent cued recall test. When subjects recalled nontarget items, their intrusions tended to come from nearby pairs. This across-pair contiguity effect was graded, spanning noncontiguously studied word pairs. The existence of such long-range temporally defined associations lends further support to contextual-retrieval models of episodic association

    SPYGLASS. II. The Multi-Generational and Multi-Origin Star Formation History of Cepheus Far North

    Full text link
    Young stellar populations provide a record of past star formation, and by establishing their members' dynamics and ages, it is possible to reconstruct the full history of star formation events. Gaia has greatly expanded the number of accessible stellar populations, with one of the most notable recently-discovered associations being Cepheus Far North (CFN), a population containing hundreds of members spanning over 100 pc. With its proximity (d \lesssim 200 pc), apparent substructure, and relatively small population, CFN represents a manageable population to study in depth, with enough evidence of internal complexity to produce a compelling star formation story. Using Gaia astrometry and photometry combined with additional spectroscopic observations, we identify over 500 candidate CFN members spread across 7 subgroups. Combining ages from isochrones, asteroseismology, dynamics, and lithium depletion, we produce well-constrained ages for all seven subgroups, revealing a largely continuous 10 Myr star formation history in the association. By tracing back the present-day populations to the time of their formation, we identify two spatially and dynamically distinct nodes in which stars form, one associated with β\beta Cephei which shows mostly co-spatial formation, and one associated with EE Draconis with a more dispersed star formation history. This detailed view of star formation demonstrates the complexity of the star formation process, even in the smallest of regions.Comment: Accepted to ApJ; 34 pages, 15 figures, 6 tables in two-column AASTEX63 forma

    Electrical Stimulation Modulates High γ Activity and Human Memory Performance.

    Get PDF
    Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62-118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with poor memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation

    Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum.

    Get PDF
    Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one\u27s own body

    Gamma oscillations correlate with working memory load in humans

    Get PDF
    Functional imaging of human cortex implicates a diverse network of brain regions supporting working memory—the capacity to hold and manipulate information for short periods of time. Although we are beginning to map out the brain networks supporting working memory, little is known about its physiological basis. We analyzed intracranial recordings from two epileptic patients as they performed a working memory task. Spectral analyses revealed that, in both patients, gamma (30-60 Hz) oscillations increased approximately linearly with memory load, tracking closely with memory load over the course of the trial. This constitutes the first evidence that gamma oscillations, widely implicated in perceptual processes, support the maintenance of multiple items in working memory

    Close companions around young stars

    Get PDF
    Multiplicity is a fundamental property that is set early during stellar lifetimes, and it is a stringent probe of the physics of star formation. The distribution of close companions around young stars is still poorly constrained by observations. We present an analysis of stellar multiplicity derived from APOGEE-2 spectra obtained in targeted observations of nearby star-forming regions. This is the largest homogeneously observed sample of high-resolution spectra of young stars. We developed an autonomous method to identify double lined spectroscopic binaries (SB2s). Out of 5007 sources spanning the mass range of \sim0.05--1.5 \msun, we find 399 binaries, including both RV variables and SB2s. The mass ratio distribution of SB2s is consistent with a uniform for q0.95q0.95. The period distribution is consistent with what has been observed in close binaries (<10<10 AU) in the evolved populations. Three systems are found to have qq\sim0.1, with a companion located within the brown dwarf desert. There are not any strong trends in the multiplicity fraction (MF) as a function of cluster age from 1 to 100 Myr. There is a weak dependence on stellar density, with companions being most numerous at Σ30\Sigma_*\sim30 stars/pc2^{-2}, and decreasing in more diffuse regions. Finally, disk-bearing sources are deficient in SB2s (but not RV variables) by a factor of \sim2; this deficit is recovered by the systems without disks. This may indicate a quick dispersal of disk material in short-period equal mass systems that is less effective in binaries with lower qq.Comment: 25 pages, 20 figures. Accepted to A

    Ripple oscillations in the left temporal neocortex are associated with impaired verbal episodic memory encoding

    Full text link
    Background: We sought to determine if ripple oscillations (80-120Hz), detected in intracranial EEG (iEEG) recordings of epilepsy patients, correlate with an enhancement or disruption of verbal episodic memory encoding. Methods: We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the relationship between the occurrence of ripple and spike events during word presentation and the odds of successful word recall following a distractor epoch, and included the seizure onset zone (SOZ) as a covariate in the LRMs. Results: We detected events during 58,312 word presentation trials from 7,630 unique electrode sites. The probability of ripple on spike (RonS) events was increased in the seizure onset zone (SOZ, p<0.04). In the left temporal neocortex RonS events during word presentation corresponded with a decrease in the odds ratio (OR) of successful recall, however this effect only met significance in the SOZ (OR of word recall 0.71, 95% CI: 0.59-0.85, n=158 events, adaptive Hochberg p<0.01). Ripple on oscillation events (RonO) that occurred in the left temporal neocortex non-SOZ also correlated with decreased odds of successful recall (OR 0.52, 95% CI: 0.34-0.80, n=140, adaptive Hochberg , p<0.01). Spikes and RonS that occurred during word presentation in the left middle temporal gyrus during word presentation correlated with the most significant decrease in the odds of successful recall, irrespective of the location of the SOZ (adaptive Hochberg, p<0.01). Conclusion: Ripples and spikes generated in left temporal neocortex are associated with impaired verbal episodic memory encoding
    corecore