122 research outputs found

    The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine

    Get PDF
    Nanoscience breakthroughs in almost every field of science and nanotechnologies make life easier in this era. Nanoscience and nanotechnology represent an expanding research area, which involves structures, devices, and systems with novel properties and functions due to the arrangement of their atoms on the 1-100 nm scale. The field was subject to a growing public awareness and controversy in the early 2000s, and in turn, the beginnings of commercial applications of nanotechnology. Nanotechnologies contribute to almost every field of science, including physics, materials science, chemistry, biology, computer science, and engineering. Notably, in recent years nanotechnologies have been applied to human health with promising results, especially in the field of cancer treatment. To understand the nature of nanotechnology, it is helpful to review the timeline of discoveries that brought us to the current understanding of this science. This review illustrates the progress and main principles of nanoscience and nanotechnology and represents the pre-modern as well as modern timeline era of discoveries and milestones in these fields

    Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions

    Get PDF
    Diabetes is a pathological condition that requires the continuous monitoring of glucose level in the blood. Its control has been tremendously improved by the application of point-of-care devices. Conventional enzyme-based sensors with electrochemical and optical transduction systems can successfully measure the glucose concentration in human blood, but they suffer from the low stability of the enzyme. Non-enzymatic wearable electrochemical and optical sensors, with low-cost, high stability, point-of-care testing and online monitoring of glucose levels in biological fluids, have recently been developed and can help to manage and control diabetes worldwide. Advances in nanoscience and nanotechnology have enabled the development of novel nanomaterials that can be implemented for the use in enzyme-free systems to detect glucose. This review summarizes recent developments of enzyme-free electrochemical and optical glucose sensors, as well as their respective wearable and commercially available devices, capable of detecting glucose at physiological pH conditions without the need to pretreat the biological fluids. Additionally, the evolution of electrochemical glucose sensor technology and a couple of widely used optical detection systems along with the glucose detection mechanism is also discussed. Finally, this review addresses limitations and challenges of current non-enzymatic electrochemical, optical, and wearable glucose sensor technologies and highlights opportunities for future research directions

    Stard3: A prospective target for cancer therapy

    Get PDF
    Cancer is one of the major causes of death in developed countries and current therapies are based on surgery, chemotherapeutic agents, and radiation. To overcome side effects induced by chemo-and radiotherapy, in recent decades, targeted therapies have been proposed in second and even first lines. Targeted drugs act on the essential pathways involved in tumor induction, progression, and metastasis, basically all the hallmark of cancers. Among emerging pathways, the cholesterol metabolic pathway is a strong candidate for this purpose. Cancer cells have an accelerated metabolic rate and require a continuous supply of cholesterol for cell division and membrane renewal. Steroidogenic acute regulatory related lipid transfer (START) proteins are a family of proteins involved in the transfer of lipids and some of them are important in non-vesicular cholesterol transportation within the cell. The alteration of their expression levels is implicated in several diseases, including cancers. In this review, we report the latest discoveries on StAR-related lipid transfer protein domain 3 (STARD3), a member of the START family, which has a potential role in cancer, focusing on the structural and biochemical characteristics and mechanisms that regulate its activity. The role of the STARD3 protein as a molecular target for the development of cancer therapies is also discussed. As STARD3 is a key protein in the cholesterol movement in cancer cells, it is of interest to identify inhibitors able to block its activity

    Self-Therapeutic Cobalt Hydroxide Nanosheets (Co(OH)2NS) for Ovarian Cancer Therapy

    Get PDF
    High-grade serous ovarian cancer (HGSOC) is one of the major life-threatening cancers in women, with a survival rate of less than 50%. So far, chemotherapy is the main therapeutic tool to cure this lethal disease; however, in many cases, it fails to cure HGSOC even with severe side effects. Self-therapeutic nanomaterials could be an effective alternative to chemotherapy, facilitated by their diverse physicochemical properties and the ability to generate reactive species for killing cancer cells. Herein, inorganic cobalt hydroxide nanosheets (Co(OH)2 NS) were synthesized by a simple solution process at room temperature, and morphological, spectroscopic, and crystallographic analyses revealed the formation of Co(OH)2 NS with good crystallinity and purity. The as-prepared Co(OH)2 NS showed excellent potency, comparable to the FDA-approved cisplatin drug to kill ovarian cancer cells. Flow cytometric analysis (nnexin V) revealed increased cellular apoptosis for Co(OH)2 NS than cobalt acetate (the precursor). Tracking experiments demonstrated that Co(OH)2 NS are internalized through the lysosome pathway, although relocalization in the cytoplasm has been observed. Hence, Co(OH)2 NS could be an effective self-therapeutic drug and open up an area for the optimization of self-therapeutic properties of cobalt nanomaterials for cancer treatment

    Palladium(II)-η3-Allyl Complexes Bearing N-Trifluoromethyl N-Heterocyclic Carbenes: A New Generation of Anticancer Agents that Restrain the Growth of High-Grade Serous Ovarian Cancer Tumoroids

    Get PDF
    The first palladium organometallic compounds bearing N-trifluoromethyl N-heterocyclic carbenes have been synthesized. These η3-allyl complexes are potent antiproliferative agents against different cancer lines (for the most part, IC50 values fall in the range 0.02–0.5 μm). By choosing 1,3,5-triaza-7-phosphaadamantane (PTA) as co-ligand, we can improve the selectivity toward tumor cells, whereas the introduction of 2-methyl substituents generally reduces the antitumor activity slightly. A series of biochemical assays, aimed at defining the cellular targets of these palladium complexes, has shown that mitochondria are damaged before DNA, thus revealing a behavior substantially different from that of cisplatin and its derivatives. We assume that the specific mechanism of action of these organometallic compounds involves nucleophilic attack on the η3-allyl fragment. The effectiveness of a representative complex, 4 c, was verified on ovarian cancer tumoroids derived from patients. The results are promising: unlike carboplatin, our compound turned out to be very active and showed a low toxicity toward normal liver organoids

    The anticancer activity of an air-stable Pd(i)-NHC (NHC = N-heterocyclic carbene) dimer

    Get PDF
    A new dinuclear Pd(i) complex coordinating two bis(NHC) ligands revealed an unsuspected stability despite the unsaturation of the two metal centres. Even more surprisingly, the compound showed high and selective antiproliferative activity against different cancer cell lines and ovarian cancer tumoroids, and the mechanism of action was different from that of cisplatin

    The anticancer activity of an air-stable Pd(i)-NHC (NHC = N-heterocyclic carbene) dimer

    Get PDF
    A new dinuclear Pd(i) complex coordinating two bis(NHC) ligands revealed an unsuspected stability despite the unsaturation of the two metal centres. Even more surprisingly, the compound showed high and selective antiproliferative activity against different cancer cell lines and ovarian cancer tumoroids, and the mechanism of action was different from that of cisplatin

    The anticancer activity of an air-stable Pd(i)-NHC (NHC = N-heterocyclic carbene) dimer

    Get PDF
    A new dinuclear Pd(i) complex coordinating two bis(NHC) ligands revealed an unsuspected stability despite the unsaturation of the two metal centres. Even more surprisingly, the compound showed high and selective antiproliferative activity against different cancer cell lines and ovarian cancer tumoroids, and the mechanism of action was different from that of cisplatin

    SEMA6C: a novel adhesion-independent FAK and YAP activator, required for cancer cell viability and growth

    Get PDF
    Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell–matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability
    • …
    corecore