506 research outputs found

    The Horrific Anxiety of Resurrection: A Study of Uncanny Mirroring in the Gothic

    Get PDF
    The overall theme of this paper surrounds the anxiety when coming face-to-face with the uncanny. More broadly, it seeks to unite the field of psychoanalysis and the horror genre in a symbiotic relationship. It is my belief, that within the heart of horror lies the mycelium of the uncanny. That is, where horrific themes and devices are, so too lives the uncanny

    Electroweak precision constraints on the Lee-Wick Standard Model

    Full text link
    We perform an analysis of the electroweak precision observables in the Lee-Wick Standard Model. The most stringent restrictions come from the S and T parameters that receive important tree level and one loop contributions. In general the model predicts a large positive S and a negative T. To reproduce the electroweak data, if all the Lee-Wick masses are of the same order, the Lee-Wick scale is of order 5 TeV. We show that it is possible to find some regions in the parameter space with a fermionic state as light as 2.4-3.5 TeV, at the price of rising all the other masses to be larger than 5-8 TeV. To obtain a light Higgs with such heavy resonances a fine-tuning of order a few per cent, at least, is needed. We also propose a simple extension of the model including a fourth generation of Standard Model fermions with their Lee-Wick partners. We show that in this case it is possible to pass the electroweak constraints with Lee-Wick fermionic masses of order 0.4-1.5 TeV and Lee-Wick gauge masses of order 3 TeV.Comment: 24 pages, 7 figure

    Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders

    Get PDF
    Grinstein, O'Connell and Wise have recently presented an extension of the Standard Model (SM), based on the ideas of Lee and Wick (LW), which demonstrates an interesting way to remove the quadratically divergent contributions to the Higgs mass induced by radiative corrections. This model predicts the existence of negative-norm copies of the usual SM fields at the TeV scale with ghost-like propagators and negative decay widths, but with otherwise SM-like couplings. In earlier work, it was demonstrated that the LW states in the gauge boson sector of these models, though easy to observe, cannot be uniquely identified as such at the LHC. In this paper, we address the issue of whether or not this problem can be resolved at an e+ee^+e^- collider with a suitable center of mass energy range. We find that measurements of the cross section and the left-right polarization asymmetry associated with Bhabha scattering can lead to a unique identification of the neutral electroweak gauge bosons of the Lee-Wick type.Comment: 16 pages, 6 figures; discussion and references adde

    Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation

    Full text link
    The transverse momentum QTQ_T distribution is computed for inclusive Higgs boson production at the energy of the CERN Large Hadron Collider. We focus on the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and incorporate contributions from the quark-gluon and quark-antiquark channels. Using an impact-parameter bb-space formalism, we include all-orders resummation of large logarithms associated with emission of soft gluons. Our resummed results merge smoothly at large QTQ_T with the fixed-order expectations in perturbative quantum chromodynamics, as they should, with no need for a matching procedure. They show a high degree of stability with respect to variation of parameters associated with the non-perturbative input at low QTQ_T. We provide distributions dσ/dydQTd\sigma/dy dQ_T for Higgs boson masses from MZM_Z to 200 GeV. The average transverse momentum at zero rapidity yy grows approximately linearly with mass of the Higgs boson over the range MZ<mh0.18mh+18M_Z < m_h \simeq 0.18 m_h + 18 ~GeV. We provide analogous results for ZZ boson production, for which we compute 25 \simeq 25 GeV. The harder transverse momentum distribution for the Higgs boson arises because there is more soft gluon radiation in Higgs boson production than in ZZ production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in wording. Published in Phys. Rev. D67, 034026 (2003

    Higgs Boson Decay into Hadronic Jets

    Full text link
    The remarkable agreement of electroweak data with standard model (SM) predictions motivates the study of extensions of the SM in which the Higgs boson is light and couples in a standard way to the weak gauge bosons. Postulated new light particles should have small couplings to the gauge bosons. Within this context it is natural to assume that the branching fractions of the light SM-like Higgs boson mimic those in the standard model. This assumption may be unwarranted, however, if there are non-standard light particles coupled weakly to the gauge bosons but strongly to the Higgs field. In particular, the Higgs boson may effectively decay into hadronic jets, possibly without important bottom or charm flavor content. As an example, we present a simple extension of the SM, in which the predominant decay of the Higgs boson occurs into a pair of light bottom squarks that, in turn, manifest themselves as hadronic jets. Discovery of the Higgs boson remains possible at an electron-positron linear collider, but prospects at hadron colliders are diminished substantially.Comment: 30 pages, 7 figure

    Supersymmetry Without Prejudice

    Full text link
    We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a conventional thermal relic, ie, the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC.Comment: 61 pages, 24 figs. Refs., figs, and text added, typos fixed; This version has reduced/bitmapped figs. For a version with better figs please go to http://www.slac.stanford.edu/~rizz

    Primordial Nucleosynthesis Constraints on Z' Properties

    Get PDF
    In models involving new TeV-scale Z' gauge bosons, the new U(1)' symmetry often prevents the generation of Majorana masses needed for a conventional neutrino seesaw, leading to three superweakly interacting ``right-handed'' neutrinos nu_R, the Dirac partners of the ordinary neutrinos. These can be produced prior to big bang nucleosynthesis by the Z' interactions, leading to a faster expansion rate and too much ^4He. We quantify the constraints on the Z' properties from nucleosynthesis for Z' couplings motivated by a class of E_6 models parametrized by an angle theta_E6. The rate for the annihilation of three approximately massless right-handed neutrinos into other particle pairs through the Z' channel is calculated. The decoupling temperature, which is higher than that of ordinary left-handed neutrinos due to the large Z' mass, is evaluated, and the equivalent number of new doublet neutrinos Delta N_nu is obtained numerically as a function of the Z' mass and couplings for a variety of assumptions concerning the Z-Z' mixing angle and the quark-hadron transition temperature T_c. Except near the values of theta_E6 for which the Z' decouples from the right-handed neutrinos, the Z' mass and mixing constraints from nucleosynthesis are much more stringent than the existing laboratory limits from searches for direct production or from precision electroweak data, and are comparable to the ranges that may ultimately be probed at proposed colliders. For the case T_c = 150 MeV with the theoretically favored range of Z-Z' mixings, Delta N_nu 4.3 TeV for any value of theta_E6. Larger mixing or larger T_c often lead to unacceptably large Delta N_nu except near the nu_R decoupling limit.Comment: 22 pages, 5 figures; two additional references adde
    corecore