506 research outputs found
The Horrific Anxiety of Resurrection: A Study of Uncanny Mirroring in the Gothic
The overall theme of this paper surrounds the anxiety when coming face-to-face with the uncanny. More broadly, it seeks to unite the field of psychoanalysis and the horror genre in a symbiotic relationship. It is my belief, that within the heart of horror lies the mycelium of the uncanny. That is, where horrific themes and devices are, so too lives the uncanny
Electroweak precision constraints on the Lee-Wick Standard Model
We perform an analysis of the electroweak precision observables in the
Lee-Wick Standard Model. The most stringent restrictions come from the S and T
parameters that receive important tree level and one loop contributions. In
general the model predicts a large positive S and a negative T. To reproduce
the electroweak data, if all the Lee-Wick masses are of the same order, the
Lee-Wick scale is of order 5 TeV. We show that it is possible to find some
regions in the parameter space with a fermionic state as light as 2.4-3.5 TeV,
at the price of rising all the other masses to be larger than 5-8 TeV. To
obtain a light Higgs with such heavy resonances a fine-tuning of order a few
per cent, at least, is needed. We also propose a simple extension of the model
including a fourth generation of Standard Model fermions with their Lee-Wick
partners. We show that in this case it is possible to pass the electroweak
constraints with Lee-Wick fermionic masses of order 0.4-1.5 TeV and Lee-Wick
gauge masses of order 3 TeV.Comment: 24 pages, 7 figure
Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders
Grinstein, O'Connell and Wise have recently presented an extension of the
Standard Model (SM), based on the ideas of Lee and Wick (LW), which
demonstrates an interesting way to remove the quadratically divergent
contributions to the Higgs mass induced by radiative corrections. This model
predicts the existence of negative-norm copies of the usual SM fields at the
TeV scale with ghost-like propagators and negative decay widths, but with
otherwise SM-like couplings. In earlier work, it was demonstrated that the LW
states in the gauge boson sector of these models, though easy to observe,
cannot be uniquely identified as such at the LHC. In this paper, we address the
issue of whether or not this problem can be resolved at an collider
with a suitable center of mass energy range. We find that measurements of the
cross section and the left-right polarization asymmetry associated with Bhabha
scattering can lead to a unique identification of the neutral electroweak gauge
bosons of the Lee-Wick type.Comment: 16 pages, 6 figures; discussion and references adde
Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation
The transverse momentum distribution is computed for inclusive Higgs
boson production at the energy of the CERN Large Hadron Collider. We focus on
the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and
incorporate contributions from the quark-gluon and quark-antiquark channels.
Using an impact-parameter -space formalism, we include all-orders
resummation of large logarithms associated with emission of soft gluons. Our
resummed results merge smoothly at large with the fixed-order
expectations in perturbative quantum chromodynamics, as they should, with no
need for a matching procedure. They show a high degree of stability with
respect to variation of parameters associated with the non-perturbative input
at low . We provide distributions for Higgs boson masses
from to 200 GeV. The average transverse momentum at zero rapidity
grows approximately linearly with mass of the Higgs boson over the range ~GeV. We provide analogous results
for boson production, for which we compute GeV. The
harder transverse momentum distribution for the Higgs boson arises because
there is more soft gluon radiation in Higgs boson production than in
production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in
wording. Published in Phys. Rev. D67, 034026 (2003
Higgs Boson Decay into Hadronic Jets
The remarkable agreement of electroweak data with standard model (SM)
predictions motivates the study of extensions of the SM in which the Higgs
boson is light and couples in a standard way to the weak gauge bosons.
Postulated new light particles should have small couplings to the gauge bosons.
Within this context it is natural to assume that the branching fractions of the
light SM-like Higgs boson mimic those in the standard model. This assumption
may be unwarranted, however, if there are non-standard light particles coupled
weakly to the gauge bosons but strongly to the Higgs field. In particular, the
Higgs boson may effectively decay into hadronic jets, possibly without
important bottom or charm flavor content. As an example, we present a simple
extension of the SM, in which the predominant decay of the Higgs boson occurs
into a pair of light bottom squarks that, in turn, manifest themselves as
hadronic jets. Discovery of the Higgs boson remains possible at an
electron-positron linear collider, but prospects at hadron colliders are
diminished substantially.Comment: 30 pages, 7 figure
Supersymmetry Without Prejudice
We begin an exploration of the physics associated with the general
CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY
breaking parameters in this scenario are chosen so as to satisfy all existing
experimental and theoretical constraints assuming that the WIMP is a
conventional thermal relic, ie, the lightest neutralino. We scan this parameter
space twice using both flat and log priors for the soft SUSY breaking mass
parameters and compare the results which yield similar conclusions. Detailed
constraints from both LEP and the Tevatron searches play a particularly
important role in obtaining our final model samples. We find that the pMSSM
leads to a much broader set of predictions for the properties of the SUSY
partners as well as for a number of experimental observables than those found
in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of
models can easily lead to atypical expectations for SUSY signals at the LHC.Comment: 61 pages, 24 figs. Refs., figs, and text added, typos fixed; This
version has reduced/bitmapped figs. For a version with better figs please go
to http://www.slac.stanford.edu/~rizz
Primordial Nucleosynthesis Constraints on Z' Properties
In models involving new TeV-scale Z' gauge bosons, the new U(1)' symmetry
often prevents the generation of Majorana masses needed for a conventional
neutrino seesaw, leading to three superweakly interacting ``right-handed''
neutrinos nu_R, the Dirac partners of the ordinary neutrinos. These can be
produced prior to big bang nucleosynthesis by the Z' interactions, leading to a
faster expansion rate and too much ^4He. We quantify the constraints on the Z'
properties from nucleosynthesis for Z' couplings motivated by a class of E_6
models parametrized by an angle theta_E6. The rate for the annihilation of
three approximately massless right-handed neutrinos into other particle pairs
through the Z' channel is calculated. The decoupling temperature, which is
higher than that of ordinary left-handed neutrinos due to the large Z' mass, is
evaluated, and the equivalent number of new doublet neutrinos Delta N_nu is
obtained numerically as a function of the Z' mass and couplings for a variety
of assumptions concerning the Z-Z' mixing angle and the quark-hadron transition
temperature T_c. Except near the values of theta_E6 for which the Z' decouples
from the right-handed neutrinos, the Z' mass and mixing constraints from
nucleosynthesis are much more stringent than the existing laboratory limits
from searches for direct production or from precision electroweak data, and are
comparable to the ranges that may ultimately be probed at proposed colliders.
For the case T_c = 150 MeV with the theoretically favored range of Z-Z'
mixings, Delta N_nu 4.3 TeV for any value of theta_E6. Larger
mixing or larger T_c often lead to unacceptably large Delta N_nu except near
the nu_R decoupling limit.Comment: 22 pages, 5 figures; two additional references adde
- …