8,162 research outputs found

    The Complexity of the Spherical pp-spin spin glass model, revisited

    Full text link
    Some questions concerning the calculation of the number of ``physical'' (metastable) states or complexity of the spherical pp-spin spin glass model are reviewed and examined further. Particular attention is focused on the general calculation procedure which is discussed step-by-step.Comment: 13 pages, 3 figure

    Complexity of the Sherrington-Kirkpatrick Model in the Annealed Approximation

    Get PDF
    A careful critical analysis of the complexity, at the annealed level, of the Sherrington-Kirkpatrick model has been performed. The complexity functional is proved to be always invariant under the Becchi-Rouet-Stora-Tyutin supersymmetry, disregarding the formulation used to define it. We consider two different saddle points of such functional, one satisfying the supersymmetry [A. Cavagna {\it et al.}, J. Phys. A {\bf 36} (2003) 1175] and the other one breaking it [A.J. Bray and M.A. Moore, J. Phys. C {\bf 13} (1980) L469]. We review the previews studies on the subject, linking different perspectives and pointing out some inadequacies and even inconsistencies in both solutions.Comment: 20 pages, 4 figure

    Large Extra Dimensions at Linear Colliders

    Get PDF
    In this talk, I first present the motivation for theories wherein extra spacetime dimensions can be compactified to have large magnitudes. In particular, I discuss the Arkani-Hamed, Dimopoulos, Dvali (ADD) scenario. I present the constraints that have been derived on these models from current experiments and the expectations from future colliders. I concentrate particularly on the possibilities of probing these extra dimensions at future linear colliders.Comment: Talk given at the Third International Workshop on Electron-Electron Interactions at TeV Energies (e- e- 99), Santa Cruz, California, 10-12 Dec 1999. 7 pages, LaTeX, style files attache

    Complexity in Mean-Field Spin-Glass Models: Ising pp-spin

    Full text link
    The Complexity of the Thouless-Anderson-Palmer (TAP) solutions of the Ising pp-spin is investigated in the temperature regime where the equilibrium phase is one step Replica Symmetry Breaking. Two solutions of the resulting saddle point equations are found. One is supersymmetric (SUSY) and includes the equilibrium value of the free energy while the other is non-SUSY. The two solutions cross exactly at a value of the free energy where the replicon eigenvalue is zero; at low free energy the complexity is described by the SUSY solution while at high free energy it is described by the non-SUSY solution. In particular the non-SUSY solution describes the total number of solutions, like in the Sherrington-Kirkpatrick (SK) model. The relevant TAP solutions corresponding to the non-SUSY solution share the same feature of the corresponding solutions in the SK model, in particular their Hessian has a vanishing isolated eigenvalue. The TAP solutions corresponding to the SUSY solution, instead, are well separated minima.Comment: 13 pages, 9 figure
    • …
    corecore