15,416 research outputs found
Fragmentation paths in dynamical models
We undertake a quantitative comparison of multi-fragmentation reactions, as
modeled by two different approaches: the Antisymmetrized Molecular Dynamics
(AMD) and the momentum-dependent stochastic mean-field (SMF) model. Fragment
observables and pre-equilibrium (nucleon and light cluster) emission are
analyzed, in connection to the underlying compression-expansion dynamics in
each model. Considering reactions between neutron-rich systems, observables
related to the isotopic properties of emitted particles and fragments are also
discussed, as a function of the parametrization employed for the isovector part
of the nuclear interaction. We find that the reaction path, particularly the
mechanism of fragmentation, is different in the two models and reflects on some
properties of the reaction products, including their isospin content. This
should be taken into account in the study of the density dependence of the
symmetry energy from such collisions.Comment: 11 pages, 13 figures, submitted to Phys. Rev.
Direct Searches of New Physics at CLIC
The multi-TeV e+e- collider CLIC may allow for the direct study of new
neutral gauge bosons or Kaluza-Klein states in the TeV range. We discuss some
of the experimental aspects for the study of such resonances. Further we
discuss briefly the effects of soft branes in scenarios with Large Extra
Dimensions, and the production of Black Holes at CLIC.Comment: 9 pages, 4 figures, to appear in the proceedings of the LCWS02
Worksho
Graviton Production at CLIC
Direct production of Kaluza-Klein states in the TeV range is studied for the
experimental environment at the multi-TeV collider CLIC. The
sensitivity of such data to model parameters is discussed for the
Randall-Sundrum(RS) and TeV scale extra dimensional models.Comment: 5 pages, 5 figures, to appear on the Proceedings of the Snowmass 2001
Summer Study, Snowmass CO (USA), July 200
Noise characterization for resonantly-enhanced polarimetric vacuum magnetic-birefringence experiments
In this work we present data characterizing the sensitivity of the
Bir\'{e}fringence Magnetique du Vide (BMV) instrument. BMV is an experiment
attempting to measure vacuum magnetic birefringence (VMB) via the measurement
of an ellipticity induced in a linearly polarized laser field propagating
through a birefringent region of vacuum in the presence of an external magnetic
field. Correlated measurements of laser noise alongside the measurement in the
main detection channel allow us to separate measured sensing noise from the
inherent birefringence noise of the apparatus. To this end we model different
sources of sensing noise for cavity-enhanced polarimetry experiments, such as
BMV. Our goal is to determine the main sources of noise, clarifying the
limiting factors of such an apparatus. We find our noise models are compatible
with the measured sensitivity of BMV. In this context we compare the phase
sensitivity of separate-arm interferometers to that of a polarimetry apparatus
for the discussion of current and future VMB measurements
Observation of the Inverse Cotton-Mouton Effect
We report the observation of the Inverse Cotton-Mouton Effect (ICME) i.e. a
magnetization induced in a medium by non resonant linearly polarized light
propagating in the presence of a transverse magnetic field. We present a
detailed study of the ICME in a TGG crystal showing the dependence of the
measured effect on the light intensity, the optical polarization, and on the
external magnetic field. We derive a relation between the Cotton-Mouton and
Inverse Cotton-Mouton effects that is roughly in agreement with existing
experimental data. Our results open the way to applications of the ICME in
optical devices
Chaos in temperature in the Sherrington-Kirkpatrick model
We prove the existence of chaos in temperature in the
Sherringhton-Kirkpatrick model. The effect is exceedingly small, namely of the
ninth order in perturbation theory. The equations describing two systems at
different temperatures constrained to have a fixed overlap are studied
analytically and numerically, yielding information about the behaviour of the
overlap distribution function in finite-size systems.Comment: REVTEX, 6 pages, 2 figure
Comparison of dynamical multifragmentation models
Multifragmentation scenarios, as predicted by antisymmetrized molecular
dynamics (AMD) or momentum-dependent stochastic mean-field (BGBD) calculations
are compared. While in the BGBD case fragment emission is clearly linked to the
spinodal decomposition mechanism, i.e. to mean-field instabilities, in AMD
many-body correlations have a stronger impact on the fragmentation dynamics and
clusters start to appear at earlier times. As a consequence, fragments are
formed on shorter time scales in AMD, on about equal footing of light particle
pre-equilibrium emission. Conversely, in BGBD pre-equilibrium and fragment
emissions happen on different time scales and are related to different
mechanisms
MENGA: a new comprehensive tool for the integration of neuroimaging data and the Allen human brain transcriptome atlas
Brain-wide mRNA mappings offer a great potential for neuroscience research as they can provide information about system proteomics. In a previous work we have correlated mRNA maps with the binding patterns of radioligands targeting specific molecular systems and imaged with positron emission tomography (PET) in unrelated control groups. This approach is potentially applicable to any imaging modality as long as an efficient procedure of imaging-genomic matching is provided. In the original work we considered mRNA brain maps of the whole human genome derived from the Allen human brain database (ABA) and we performed the analysis with a specific region-based segmentation with a resolution that was limited by the PET data parcellation. There we identified the need for a platform for imaging-genomic integration that should be usable with any imaging modalities and fully exploit the high resolution mapping of ABA dataset.In this work we present MENGA (Multimodal Environment for Neuroimaging and Genomic Analysis), a software platform that allows the investigation of the correlation patterns between neuroimaging data of any sort (both functional and structural) with mRNA gene expression profiles derived from the ABA database at high resolution.We applied MENGA to six different imaging datasets from three modalities (PET, single photon emission tomography and magnetic resonance imaging) targeting the dopamine and serotonin receptor systems and the myelin molecular structure. We further investigated imaging-genomic correlations in the case of mismatch between selected proteins and imaging targets
Quenched Computation of the Complexity of the Sherrington-Kirkpatrick Model
The quenched computation of the complexity in the
Sherrington-Kirkpatrick model is presented. A modified Full Replica
Symmetry Breaking Ansatz is introduced in order to study the complexity
dependence on the free energy. Such an Ansatz corresponds to require
Becchi-Rouet-Stora-Tyutin supersymmetry. The complexity computed this way is
the Legendre transform of the free energy averaged over the quenched disorder.
The stability analysis shows that this complexity is inconsistent at any free
energy level but the equilibirum one. The further problem of building a
physically well defined solution not invariant under supersymmetry and
predicting an extensive number of metastable states is also discussed.Comment: 19 pages, 13 figures. Some formulas added corrected, changes in
discussion and conclusion, one figure adde
Vacuum magnetic linear birefringence using pulsed fields: the BMV experiment
We present the current status of the BMV experiment. Our apparatus is based
on an up-to-date resonant optical cavity coupled to a transverse magnetic
field. We detail our data acquisition and analysis procedure which takes into
account the symmetry properties of the raw data with respect to the orientation
of the magnetic field and the sign of the cavity birefringence. The measurement
result of the vacuum magnetic linear birefringence k_\mathrm{CM}8 \times 10^{-21}^{-2}3\sigma$ confidence level
- âŠ