29 research outputs found

    Oxidative damage in DNA bases revealed by UV resonant Raman spectroscopy

    Get PDF
    We report on the use of the UV Raman technique to monitor the oxidative damage of deoxynucleotide triphosphates (dATP, dGTP, dCTP and dTTP) and DNA (plasmid vector) solutions. Nucleotide and DNA aqueous solutions were exposed to hydrogen peroxide (H2O2) and iron containing carbon nanotubes (CNTs) to produce Fenton's reaction and induce oxidative damage. UV Raman spectroscopy is shown to be maximally efficient to reveal changes in the nitrogenous bases during the oxidative mechanisms occurring on these molecules. The analysis of Raman spectra, supported by numerical computations, revealed that the Fenton's reaction causes an oxidation of the nitrogenous bases in dATP, dGTP and dCTP solutions leading to the production of 2-hydroxyadenine, 8-hydroxyguanine and 5-hydroxycytosine. No thymine change was revealed in the dTTP solution under the same conditions. Compared to single nucleotide solutions, plasmid DNA oxidation has resulted in more radical damage that causes the breaking of the adenine and guanine aromatic rings. Our study demonstrates the advantage of using UV Raman spectroscopy for rapidly monitoring the oxidation changes in DNA aqueous solutions that can be assigned to specific nitrogenous bases

    Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Get PDF
    Background: Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins) around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF) microscopy, which reveals new features in the elemental lateral distribution. Results: The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions: The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the presence of asbestos fibres. The new results obtained by simultaneous structural and chemical analysis of tissue specimen have provided clear evidence that Mg, in addition to Fe, is also involved in the formation mechanisms of asbestos bodies. This is the first important step to further thorough investigations that will shed light on the physiopathological role of Mg in tissue response to the asbestos toxicity

    Detention and mapping of iron and toxic environmental elements in human ovarian endometriosis: A suggested combined role

    Get PDF
    Background: Endometriosis is a disease affecting 10-15 % of women worldwide, consisting in the ectopic growth of endometrial cells outside the uterine cavity. Whist the pathogenetic mechanisms of endometriosis remain elusive and contemplating even environmental causes, iron deposits are common in endometrial lesions, indicating an altered iron metabolism at this level. This study was undertaken to reveal a possible relationship between iron dysmetabolism and accumulation of environmental metals. Methods: By combining histological and histochemical analysis (H&E and Perl's staining) with ÎĽ- and nano- synchrotron-based (SR-based) X-ray Fluorescence (XRF) microscopy, we investigated the distribution of iron and other elements in the ovarian endometriomas of 12 endometriosis patients and in 7 healthy endometrium samples. Results: XRF microscopy expanded the findings obtained by Perl's staining, revealing with an exceptional sensitivity intracellular features of iron accumulation in the epithelial endometrium, stroma and macrophages of the endometriotic lesions. XRF evidenced that iron was specifically accumulated in multiple micro aggregates, reaching concentrations up to 10-20 % p/p. Moreover, by XRF analysis we revealed for the first time the retention of a number of exogenous and potentially toxic metals such as Pb, Br, Ti, Al Cr, Si and Rb partially or totally co-localizing with iron. Conclusion: ÎĽXRF reveals accumulation and colocalization of iron and environmental metals in human ovarian endometriosis, suggesting a role in the pathogenesis of endometriosis

    Differential protein folding and chemical changes in lung tissues exposed to asbestos or particulates

    Get PDF
    Environmental and occupational inhalants may induce a large number of pulmonary diseases, with asbestos exposure being the most risky. The mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of X-ray fluorescence (\u3bcXRF) and Fourier Transform InfraRed (\u3bcFTIR) microscopy was used to chemically characterize and compare asbestos bodies versus environmental particulates (anthracosis) in lung tissues from asbestos exposed and control patients. \u3bcXRF analyses revealed heterogeneously aggregated particles in the anthracotic structures, containing mainly Si, K, Al and Fe. Both asbestos and particulates alter lung iron homeostasis, with a more marked effect in asbestos exposure. \u3bcFTIR analyses revealed abundant proteins on asbestos bodies but not on anthracotic particles. Most importantly, the analyses demonstrated that the asbestos coating proteins contain high levels of \u3b2-sheet structures. The occurrence of conformational changes in the proteic component of the asbestos coating provides new insights into long-term asbestos effects

    Iron-related toxicity of single-walled carbon nanotubes and crocidolite fibres in human mesothelial cells investigated by Synchrotron XRF microscopy

    Get PDF
    Carbon nanotubes (CNTs) are promising products in industry and medicine, but there are several human health concerns since their fibrous structure resembles asbestos. The presence of transition metals, mainly iron, in the fibres seems also implicated in the pathogenetic mechanisms. To unravel the role of iron at mesothelial level, we compared the chemical changes induced in MeT-5A cells by the exposure to asbestos (crocidolite) or CNTs at different content of iron impurities (raw-SWCNTs, purified- and highly purified-SWCNTs). We applied synchrotron-based X-Ray Fluorescence (XRF) microscopy and soft X-ray imaging (absorption and phase contrast images) to monitor chemical and morphological changes of the exposed cells. In parallel, we performed a ferritin assay. X-ray microscopy imaging and XRF well localize the crocidolite fibres interacting with cells, as well as the damage-related morphological changes. Differently, CNTs presence could be only partially evinced by low energy XRF through carbon distribution and sometimes iron co-localisation. Compared to controls, the cells treated with raw-SWCNTs and crocidolite fibres showed a severe alteration of iron distribution and content, with concomitant stimulation of ferritin production. Interestingly, highly purified nanotubes did not altered iron metabolism. The data provide new insights for possible CNTs effects at mesothelial/pleural level in humans

    Studio pilota sul ruolo dell\u2019allattamento e dei fattori riproduttivi nel rischio dei carcinomi mammari Luminali nelle donne in premenopausa

    Get PDF
    Il ruolo dei fattori riproduttivi nel rischio di sviluppare un carcinoma alla mammella \ue8 ancora controverso e poco si sa su come questi influiscano sul rischio dei differenti sottotipi molecolari . La maggior parte degli studi pubblicati riguardano coorti di donne in pre e postmenopausa o solo donne in postmenopausa. Scopo del nostro studio \ue8 stato analizzare il ruolo dell\u2019allattamento e dei fattori riproduttivi nei tumori Luminali, il 75% di tutti i carcinomi della mammella, in un campione di donne giovani residenti nella provincia di Trieste, situata in Friuli-Venezia Giulia, una tra le regioni con i pi\uf9 alti tassi d\u2019incidenza di carcinoma mammario

    Gestione delle pazienti con tumore fillode della mammella: esperienza triestina nel periodo 2006-2014

    Get PDF
    La diagnosi e la gestione dei tumori fillodi della mammella \ue8 complessa a causa del basso tasso di incidenza e dell\u2019imprevedibilit\ue0 del comportamento di questo tipo di neoplasie (meno dell\u20191% tra tutti i tumori della mammella [1]). L\u2019obiettivo di questo studio \ue8 analizzare i casi di tumori filloidi diagnosticati a Trieste nel periodo 2006-2014 al fine di contestualizzare il comportamento particolarmente aggressivo di un tumore fillode maligno insorto in una paziente con pregressi fillodi benigni

    Potential advantages of using synchrotron X-ray based techniques in pediatric research.

    No full text
    International audienceSynchrotron radiation (SR), which combines extremely high intensity, high collimation, tunability, and continuous energy spectrum, allows the development of advanced X-ray based techniques that are becoming a uniquely useful tool in life science research, along providing exciting opportunities in biomedical imaging and radiotherapy. This review summarize emerging techniques and their potential to greatly enhance the exploration of dynamical biological process occurring across various spatial and temporal regimes, from whole body physiology, down to the location of individual chemical species within single cells. In recent years pediatric research and clinic practice have started to profit from these new opportunities, particularly by extending the diagnostic and therapeutic capabilities of these X-ray based techniques. In diagnosis, technical advances in DEI and KES imaging modalities have been demonstrated as particularly valuable for children and women since SR allows dose minimization, with significant reductions compared to conventional approaches. However, the greatest expectations are in the field of SR based radiotherapy, increasingly studies are demonstrating SR radiotherapy provides improved chances of recovery; this is especially the case for pediatric patients. In addition, we report on the applicability of advanced X-ray microscopy techniques that offer exceptional spatial and quantitative resolution in elemental detection. These techniques, which are useful for in vitro studies, will be particularly advantageous where investigators seek deeper understanding of diseases where mismetabolism of metals, either physiological important (i.e. Cu, Zn) or outright toxic (i.e. Pb), underlies pathogenesis

    Potential advantages of using synchrotron X-ray based techniques in pediatric research.

    No full text
    International audienceSynchrotron radiation (SR), which combines extremely high intensity, high collimation, tunability, and continuous energy spectrum, allows the development of advanced X-ray based techniques that are becoming a uniquely useful tool in life science research, along providing exciting opportunities in biomedical imaging and radiotherapy. This review summarize emerging techniques and their potential to greatly enhance the exploration of dynamical biological process occurring across various spatial and temporal regimes, from whole body physiology, down to the location of individual chemical species within single cells. In recent years pediatric research and clinic practice have started to profit from these new opportunities, particularly by extending the diagnostic and therapeutic capabilities of these X-ray based techniques. In diagnosis, technical advances in DEI and KES imaging modalities have been demonstrated as particularly valuable for children and women since SR allows dose minimization, with significant reductions compared to conventional approaches. However, the greatest expectations are in the field of SR based radiotherapy, increasingly studies are demonstrating SR radiotherapy provides improved chances of recovery; this is especially the case for pediatric patients. In addition, we report on the applicability of advanced X-ray microscopy techniques that offer exceptional spatial and quantitative resolution in elemental detection. These techniques, which are useful for in vitro studies, will be particularly advantageous where investigators seek deeper understanding of diseases where mismetabolism of metals, either physiological important (i.e. Cu, Zn) or outright toxic (i.e. Pb), underlies pathogenesis
    corecore