4 research outputs found

    Multilingual Name Entity Recognition and Intent Classification Employing Deep Learning Architectures

    Full text link
    Named Entity Recognition and Intent Classification are among the most important subfields of the field of Natural Language Processing. Recent research has lead to the development of faster, more sophisticated and efficient models to tackle the problems posed by those two tasks. In this work we explore the effectiveness of two separate families of Deep Learning networks for those tasks: Bidirectional Long Short-Term networks and Transformer-based networks. The models were trained and tested on the ATIS benchmark dataset for both English and Greek languages. The purpose of this paper is to present a comparative study of the two groups of networks for both languages and showcase the results of our experiments. The models, being the current state-of-the-art, yielded impressive results and achieved high performance.Comment: 24 pages, 5 figures, 11 tables, dataset availabl

    Immunohisto(cyto)chemistry: an old time classic tool driving modern oncological therapies

    No full text
    In the era of precision medicine immunohistochemistry (IHC) and immunocytochemistry (ICC) share some of the highlights in personalized treatment. Survival data obtained from clinical trials shape the cut-offs and IHC scoring that serve as recommendations for patient selection both for targeted and conventional therapies. Assessment of Estrogen and Progesterone Receptors along with HER2 status has been among the first approved immunostaining assays revolutionizing breast cancer treatment. Similarly, ALK positivity predicts the efficacy of ALK inhibitors in patients with non-small cell lung cancer (NSCLC). In recent years, Programmed Death Ligand 1 (PD-L1) IHC assays have been approved as companion or complimentary diagnostic tools predicting the response to checkpoint inhibitors. Anti-PD-L1 and anti-PD-1 monoclonal antibodies have inaugurated a new period in the treatment of advanced cancers, but the path to approval of these biomarkers is filled with immunohistochemical challenges. The latter brings to the fore the significance of molecular pathology as a hub between basic and clinical research. Besides, novel markers are translated into routine practice, suggesting that we are at the beginning of a new exciting period. Unraveling the molecular mechanisms involved in cellular homeostasis unfolds biomarkers with greater specificity and sensitivity. The introduction of GL13 (SenTraGor®) for the detection of senescent cells in archival material, the implementation of key players of stress response pathways and the development of compounds detecting common mutant P53 isoforms in dictating oncological treatments are paradigms for precision oncology

    Immunohisto(cyto)chemistry: an old time classic tool driving modern oncological therapies

    No full text
    In the era of precision medicine immunohistochemistry (IHC) and immunocytochemistry (ICC) share some of the highlights in personalized treatment. Survival data obtained from clinical trials shape the cut-offs and IHC scoring that serve as recommendations for patient selection both for targeted and conventional therapies. Assessment of Estrogen and Progesterone Receptors along with HER2 status has been among the first approved immunostaining assays revolutionizing breast cancer treatment. Similarly, ALK positivity predicts the efficacy of ALK inhibitors in patients with non-small cell lung cancer (NSCLC). In recent years, Programmed Death Ligand 1 (PD-L1) IHC assays have been approved as companion or complimentary diagnostic tools predicting the response to checkpoint inhibitors. Anti-PD-L1 and anti-PD-1 monoclonal antibodies have inaugurated a new period in the treatment of advanced cancers, but the path to approval of these biomarkers is filled with immunohistochemical challenges. The latter brings to the fore the significance of molecular pathology as a hub between basic and clinical research. Besides, novel markers are translated into routine practice, suggesting that we are at the beginning of a new exciting period. Unraveling the molecular mechanisms involved in cellular homeostasis unfolds biomarkers with greater specificity and sensitivity. The introduction of GL13 (SenTraGor (R)) for the detection of senescent cells in archival material, the implementation of key players of stress response pathways and the development of compounds detecting common mutant P53 isoforms in dictating oncological treatments are paradigms for precision oncology

    Towards Functional Insect Feeds: Agri-Food By-Products Enriched with Post-Distillation Residues of Medicinal Aromatic Plants in Tenebrio molitor (Coleoptera: Tenebrionidae) Breeding

    No full text
    Sustainability, circular economy and alternative production systems are urgent imperatives for humanity and animal husbandry. Unless wasted, agri-food by-products can offer a promising source of high value. We evaluated the effect of rice bran (RB), corncob (CC), potato peels (PP), solid biogas residues (BR), and olive-oil processing residuals (OR), as alternative substrates to wheat bran (WB as control), on the growth and nutritional value of Tenebrio molitor during its breeding for animal feeds and/or human consumption. Innovation-wise, we further investigated the substrate supplementation (0, 10, 20%) with post-distillation residues of Mediterranean aromatic-medicinal plants (MAPs: lavender, Greek oregano, rosemary, olive; 1:1:1:1 ratio). Tenebrio molitor larvae (TML) were reared in all the studied substrates, and TML and diets’ proximate and fatty acid compositions as well as total phenol and flavonoid content and antioxidant potential were assessed using standard procedures. After statistical analysis of correlations, we observed that CC promoted oviposition and progeny survival; larval weight and dry matter were positively affected mainly by dietary energy and fat content; number of TML and/or larval weight increased using 10% MAPs inclusion in WB, RB and OR or RB, OR, BR and PP, respectively, which did not affect protein content; TML fatty acid composition decreased the content of saturated ones and increased that of mono-unsaturated ones; MAPs residues had an apparent favorable impact on total phenolic content and antioxidant activity of each substrate, with RB displaying the highest capacity and content. These findings indicate that alternative substrates can be exploited and their enrichment with natural phenolics is able to influence T. molitor growth, offering highly beneficial and nutritional value
    corecore