28 research outputs found

    Environmental impact and life cycle financial cost of hybrid (reusable/single-use) instruments versus single-use equivalents in laparoscopic cholecystectomy

    Get PDF
    Background Hybrid surgical instruments contain both single-use and reusable components, potentially bringing together advantages from both approaches. The environmental and financial costs of such instruments have not previously been evaluated. Methods We used Life Cycle Assessment to evaluate the environmental impact of hybrid laparoscopic clip appliers, scissors, and ports used for a laparoscopic cholecystectomy, comparing these with single-use equivalents. We modelled this using SimaPro and ReCiPe midpoint and endpoint methods to determine 18 midpoint environmental impacts including the carbon footprint, and three aggregated endpoint impacts. We also conducted life cycle cost analysis of products, taking into account unit cost, decontamination, and disposal costs. Results The environmental impact of using hybrid instruments for a laparoscopic cholecystectomy was lower than single-use equivalents across 17 midpoint environmental impacts, with mean average reductions of 60%. The carbon footprint of using hybrid versions of all three instruments was around one-quarter of single-use equivalents (1756 g vs 7194 g CO2e per operation) and saved an estimated 1.13 e−5 DALYs (disability adjusted life years, 74% reduction), 2.37 e−8 species.year (loss of local species per year, 76% reduction), and US $ 0.6 in impact on resource depletion (78% reduction). Scenario modelling indicated that environmental performance of hybrid instruments was better even if there was low number of reuses of instruments, decontamination with separate packaging of certain instruments, decontamination using fossil-fuel-rich energy sources, or changing carbon intensity of instrument transportation. Total financial cost of using a combination of hybrid laparoscopic instruments was less than half that of single-use equivalents (GBP £131 vs £282). Conclusion Adoption of hybrid laparoscopic instruments could play an important role in meeting carbon reduction targets for surgery and also save money

    Plastics in healthcare: time for a re-evaluation

    Get PDF
    No description supplie

    Minimising carbon and financial costs of steam sterilisation and packaging of reusable surgical instruments

    Get PDF
    Background: The aim of this study was to estimate the carbon footprint and financial cost of decontaminating (steam sterilization) and packaging reusable surgical instruments, indicating how that burden might be reduced, enabling surgeons to drive action towards net-zero-carbon surgery. Methods: Carbon footprints were estimated using activity data and prospective machine-loading audit data at a typical UK in-hospital sterilization unit, with instruments wrapped individually in flexible pouches, or prepared as sets housed in single-use tray wraps or reusable rigid containers. Modelling was used to determine the impact of alternative machine loading, opening instruments during the operation, streamlining sets, use of alternative energy sources for decontamination, and alternative waste streams. Results: The carbon footprint of decontaminating and packaging instruments was lowest when instruments were part of sets (66-77 g CO2e per instrument), with a two- to three-fold increase when instruments were wrapped individually (189 g CO2e per instrument). Where 10 or fewer instruments were required for the operation, obtaining individually wrapped items was preferable to opening another set. The carbon footprint was determined significantly by machine loading and the number of instruments per machine slot. Carbon and financial costs increased with streamlining sets. High-temperature incineration of waste increased the carbon footprint of single-use packaging by 33-55 per cent, whereas recycling reduced this by 6-10 per cent. The absolute carbon footprint was dependent on the energy source used, but this did not alter the optimal processes to minimize that footprint. Conclusion: Carbon and financial savings can be made by preparing instruments as part of sets, integrating individually wrapped instruments into sets rather than streamlining them, efficient machine loading, and using low-carbon energy sources alongside recycling

    The carbon footprint of products used in five common surgical operations: identifying contributing products and processes

    Get PDF
    Objectives Mitigating carbon footprint of products used in resource-intensive areas such as surgical operating rooms will be important in achieving net zero carbon healthcare. The aim of this study was to evaluate the carbon footprint of products used within five common operations, and to identify the biggest contributors (hotspots). Design A predominantly process-based carbon footprint analysis was conducted for products used in the five highest volume surgical operations performed in the National Health System in England. Setting The carbon footprint inventory was based on direct observation of 6–10 operations/type, conducted across three sites within one NHS Foundation Trust in England. Participants Patients undergoing primary elective carpal tunnel decompression, inguinal hernia repair, knee arthroplasty, laparoscopic cholecystectomy, tonsillectomy (March 2019 – January 2020). Main outcome measures We determined the carbon footprint of the products used in each of the five operations, alongside greatest contributors through analysis of individual products and of underpinning processes. Results The mean average carbon footprint of products used for carpal tunnel decompression was 12.0 kg CO2e (carbon dioxide equivalents); 11.7 kg CO2e for inguinal hernia repair; 85.5 kg CO2e for knee arthroplasty; 20.3 kg CO2e for laparoscopic cholecystectomy; and 7.5 kg CO2e for tonsillectomy. Across the five operations, 23% of product types were responsible for ≥80% of the operation carbon footprint. Products with greatest carbon contribution for each operation type were the single-use hand drape (carpal tunnel decompression), single-use surgical gown (inguinal hernia repair), bone cement mix (knee arthroplasty), single-use clip applier (laparoscopic cholecystectomy) and single-use table drape (tonsillectomy). Mean average contribution from production of single-use items was 54%, decontamination of reusables 20%, waste disposal of single-use items 8%, production of packaging for single-use items 6% and linen laundering 6%. Conclusions Change in practice and policy should be targeted towards those products making greatest contribution, and should include reducing single-use items and switching to reusables, alongside optimising processes for decontamination and waste disposal, modelled to reduce carbon footprint of these operations by 23%–42%

    Life cycle assessment and life cycle cost of repairing surgical scissors

    Get PDF
    Purpose The primary objective of this study was to evaluate the environmental impact and financial cost of repairing surgical scissors. Methods We used life cycle assessment (LCA) and life cycle cost analysis to estimate environmental impacts and financial cost of repairing surgical scissors. The functional unit was one use of a reusable surgical scissor (manufactured in Germany and used in the UK), and three baseline scenarios were compared: no repair, onsite (hospital), and offsite (external contract) repair. This ‘cradle-to-grave’ analysis included raw material extraction, manufacture of scissors and materials within primary and secondary packaging, transportation, decontamination, repair (where relevant), and waste disposal. Primary activity data was sourced from the instrument manufacturer, supplier, and from UK repair centres (both onsite and offsite), whilst the Ecoinvent database was used as a secondary data source for the manufacture of scissors. The World ReCiPe Midpoint and Endpoint Hierarchist method (Version 1.1) was used for environmental impact assessment. Scenario analysis was used to evaluate the impact of altering different assumptions, including number of uses, reducing number of repairs, increasing distance to offsite repair centre, and alternative electricity sources and waste handling processes. Life cycle cost analysis was calculated based on purchase cost, and cost of decontamination, repair, and waste disposal. Results and discussion The carbon footprint of reusable scissors was 70 g CO2e per use, assuming scissors were used 40 times before replacement. This was reduced by 19% through use of offsite repair every 40 uses (57 g CO2e/scissor use), with small additional reductions associated with onsite repair (56 g CO2e/scissor use). Similar patterns of reduction were calculated for eighteen midpoint environmental impact categories (mean impact reduction of 30% for those repaired offsite relative to no repair) and also across three endpoint categories. Decontamination made the biggest contribution to the carbon footprint across all baseline scenarios (76% where no repair, 95–97% where repaired offsite and onsite respectively). Findings were robust to alternative scenario analyses. Life cycle cost was GBP £1.43 per use of reusable scissors, and when repaired either on- or offsite this decreased by 32% to GBP £0.97 per use. Conclusion Repairing surgical scissors rather than replacing them with a new pair can reduce environmental and financial cost. The extent to which repair may play a role in mitigating the environmental impact of other surgical instruments requires further research
    corecore