5 research outputs found

    Tinto: Multisensor Benchmark for 3-D Hyperspectral Point Cloud Segmentation in the Geosciences

    Get PDF
    The increasing use of deep learning techniques has reduced interpretation time and, ideally, reduced interpreter bias by automatically deriving geological maps from digital outcrop models. However, accurate validation of these automated mapping approaches is a significant challenge due to the subjective nature of geological mapping and the difficulty in collecting quantitative validation data. Additionally, many state-of-the-art deep learning methods are limited to 2-D image data, which is insufficient for 3-D digital outcrops, such as hyperclouds. To address these challenges, we present Tinto, a multisensor benchmark digital outcrop dataset designed to facilitate the development and validation of deep learning approaches for geological mapping, especially for nonstructured 3-D data like point clouds. Tinto comprises two complementary sets: 1) a real digital outcrop model from Corta Atalaya (Spain), with spectral attributes and ground-truth data and 2) a synthetic twin that uses latent features in the original datasets to reconstruct realistic spectral data (including sensor noise and processing artifacts) from the ground truth. The point cloud is dense and contains 3242964 labeled points. We used these datasets to explore the abilities of different deep learning approaches for automated geological mapping. By making Tinto publicly available, we hope to foster the development and adaptation of new deep learning tools for 3-D applications in Earth sciences. The dataset can be accessed through this link: https://doi.org/10.14278/rodare.2256

    Ground and Multi-Class Classification of Airborne Laser Scanner Point Clouds Using Fully Convolutional Networks

    No full text
    Various classification methods have been developed to extract meaningful information from Airborne Laser Scanner (ALS) point clouds. However, the accuracy and the computational efficiency of the existing methods need to be improved, especially for the analysis of large datasets (e.g., at regional or national levels). In this paper, we present a novel deep learning approach to ground classification for Digital Terrain Model (DTM) extraction as well as for multi-class land-cover classification, delivering highly accurate classification results in a computationally efficient manner. Considering the top–down acquisition angle of ALS data, the point cloud is initially projected on the horizontal plane and converted into a multi-dimensional image. Then, classification techniques based on Fully Convolutional Networks (FCN) with dilated kernels are designed to perform pixel-wise image classification. Finally, labels are transferred from pixels to the original ALS points. We also designed a Multi-Scale FCN (MS-FCN) architecture to minimize the loss of information during the point-to-image conversion. In the ground classification experiment, we compared our method to a Convolutional Neural Network (CNN)-based method and LAStools software. We obtained a lower total error on both the International Society for Photogrammetry and Remote Sensing (ISPRS) filter test benchmark dataset and AHN-3 dataset in the Netherlands. In the multi-class classification experiment, our method resulted in higher precision and recall values compared to the traditional machine learning technique using Random Forest (RF); it accurately detected small buildings. The FCN achieved precision and recall values of 0.93 and 0.94 when RF obtained 0.91 and 0.92, respectively. Moreover, our strategy significantly improved the computational efficiency of state-of-the-art CNN-based methods, reducing the point-to-image conversion time from 47 h to 36 min in our experiments on the ISPRS filter test dataset. Misclassification errors remained in situations that were not included in the training dataset, such as large buildings and bridges, or contained noisy measurements

    Ground and Multi-Class Classification of Airborne Laser Scanner Point Clouds Using Fully Convolutional Networks

    No full text
    Various classification methods have been developed to extract meaningful information from Airborne Laser Scanner (ALS) point clouds. However, the accuracy and the computational efficiency of the existing methods need to be improved, especially for the analysis of large datasets (e.g., at regional or national levels). In this paper, we present a novel deep learning approach to ground classification for Digital Terrain Model (DTM) extraction as well as for multi-class land-cover classification, delivering highly accurate classification results in a computationally efficient manner. Considering the top–down acquisition angle of ALS data, the point cloud is initially projected on the horizontal plane and converted into a multi-dimensional image. Then, classification techniques based on Fully Convolutional Networks (FCN) with dilated kernels are designed to perform pixel-wise image classification. Finally, labels are transferred from pixels to the original ALS points. We also designed a Multi-Scale FCN (MS-FCN) architecture to minimize the loss of information during the point-to-image conversion. In the ground classification experiment, we compared our method to a Convolutional Neural Network (CNN)-based method and LAStools software. We obtained a lower total error on both the International Society for Photogrammetry and Remote Sensing (ISPRS) filter test benchmark dataset and AHN-3 dataset in the Netherlands. In the multi-class classification experiment, our method resulted in higher precision and recall values compared to the traditional machine learning technique using Random Forest (RF); it accurately detected small buildings. The FCN achieved precision and recall values of 0.93 and 0.94 when RF obtained 0.91 and 0.92, respectively. Moreover, our strategy significantly improved the computational efficiency of state-of-the-art CNN-based methods, reducing the point-to-image conversion time from 47 h to 36 min in our experiments on the ISPRS filter test dataset. Misclassification errors remained in situations that were not included in the training dataset, such as large buildings and bridges, or contained noisy measurements

    Ground and Multi-Class Classification of Airborne Laser Scanner Point Clouds Using Fully Convolutional Networks

    Get PDF
    Various classification methods have been developed to extract meaningful information from Airborne Laser Scanner (ALS) point clouds. However, the accuracy and the computational efficiency of the existing methods need to be improved, especially for the analysis of large datasets (e.g., at regional or national levels). In this paper, we present a novel deep learning approach to ground classification for Digital Terrain Model (DTM) extraction as well as for multi-class land-cover classification, delivering highly accurate classification results in a computationally efficient manner. Considering the top⁻down acquisition angle of ALS data, the point cloud is initially projected on the horizontal plane and converted into a multi-dimensional image. Then, classification techniques based on Fully Convolutional Networks (FCN) with dilated kernels are designed to perform pixel-wise image classification. Finally, labels are transferred from pixels to the original ALS points. We also designed a Multi-Scale FCN (MS-FCN) architecture to minimize the loss of information during the point-to-image conversion. In the ground classification experiment, we compared our method to a Convolutional Neural Network (CNN)-based method and LAStools software. We obtained a lower total error on both the International Society for Photogrammetry and Remote Sensing (ISPRS) filter test benchmark dataset and AHN-3 dataset in the Netherlands. In the multi-class classification experiment, our method resulted in higher precision and recall values compared to the traditional machine learning technique using Random Forest (RF); it accurately detected small buildings. The FCN achieved precision and recall values of 0.93 and 0.94 when RF obtained 0.91 and 0.92, respectively. Moreover, our strategy significantly improved the computational efficiency of state-of-the-art CNN-based methods, reducing the point-to-image conversion time from 47 h to 36 min in our experiments on the ISPRS filter test dataset. Misclassification errors remained in situations that were not included in the training dataset, such as large buildings and bridges, or contained noisy measurements

    Fully Convolutional Networks for Ground Classification from Airborne Laser Scanner data

    No full text
    We present an efficient procedure to classify airborne laser scanner data into ground and non-ground. The classification is performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on AHN-3 data resulting in 4.02% of total error, 2.15% of type I error and 6.14% of type II error. We show that this method can be extended to further classify the point cloud into buildings and vegetation
    corecore