3 research outputs found

    Review on PACAP-Induced Transcriptomic and Proteomic Changes in Neuronal Development and Repair

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread occurrence and diverse biological effects. Among its several different effects, of special importance is the action of PACAP on neuronal proliferation, differentiation and migration, and neuroprotection. The neuroprotective mechanism of PACAP is both direct and indirect, via neuronal and non-neuronal cells. Several research groups have performed transcriptomic and proteomic analysis on PACAP-mediated genes and proteins. Hundreds of proteins have been described as being involved in the PACAP-mediated neuroprotection. In the present review we summarize the few currently available transcriptomic data potentially leading to the proteomic changes in neuronal development and protection. Proteomic studies focusing on the neuroprotective role of PACAP are also reviewed and discussed in light of the most intriguing and promising effect of this neuropeptide, which may possibly have future therapeutic potential

    Alterations of Nigral Dopamine Levels in Parkinson’s Disease after Environmental Enrichment and PACAP Treatment in Aging Rats

    Get PDF
    The neuroprotective effects of environmental enrichment and PACAP (pituitary adenylate cyclase-activating polypeptide) are well-described in Parkinson’s disease. The aim of our study is to investigate the beneficial effects of these factors in aging parkinsonian rats. Newborn Wistar rats were divided into standard and enriched groups according to their environmental conditions. Standard animals were raised under regular conditions. During the first five postnatal weeks, enriched pups were placed in larger cages with different objects. Aging animals received (1) saline, (2) 6-hydroxidopamine (6-OHDA), or (3) 6-OHDA + PACAP injections into the left substantia nigra (s.n.). On the seventh postoperative day, the left and right s.n. were collected. The s.n. of young and aging unoperated animals were also examined in our experiment. We determined the dopamine (DA) levels by the HPLC-MS technique, while the sandwich ELISA method was used to measure the Parkinson disease protein 7 (PARK7) protein levels. In healthy animals, we found an age-related decrease of DA levels. In aging parkinsonian-enriched rats, the operation did not result in a significant DA loss. PACAP treatment could prevent the DA loss in both the standard and enriched groups. All injured PACAP-treated rats showed remarkably higher protective PARK7 levels. The protective effect of PACAP correlated with the increase of the DA and PARK7 levels

    Comparative Protein Composition of the Brains of PACAP-Deficient Mice Using Mass Spectrometry-Based Proteomic Analysis

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widespread neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. The diverse biological actions provide the background for the variety of deficits observed in mice lacking endogenous PACAP. PACAP-deficient mice display several abnormalities, such as sudden infant death syndrome (SIDS)-like phenotype, decreased cell protection, and increased risk of Parkinson's disease. However, the molecular and proteomic background is still unclear. Therefore, our aim was to investigate the differences in peptide and protein composition in the brains of PACAP-deficient and wild-type mice using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric (MS)-based proteomic analysis. Brains from PACAP-deficient mice were removed, and different brain areas (cortex, hippocampus, diencephalon, mesencephalon, brainstem, and cerebellum) were separated. Brain pieces were weighed, homogenized, and further processed for electrophoretic analysis. Our results revealed several differences in diencephalon and mesencephalon. The protein bands of interest were cut from the gel, samples were digested with trypsin, and the tryptic peptides were measured by matrix-assisted laser desorption ionization time of flight (MALDI TOF) MS. Results were analyzed by MASCOT Search Engine. Among the altered proteins, several are involved in metabolic processes, energy homeostasis, and structural integrity. ATP-synthase and tubulin beta-2A were expressed more strongly in PACAP-knockout mice. In contrast, the expression of more peptides/proteins markedly decreased in knockout mice, like pyruvate kinase, fructose biphosphate aldolase-A, glutathione S-transferase, peptidyl propyl cis-trans isomerase-A, gamma enolase, and aspartate amino transferase. The altered expression of these enzymes might partially account for the decreased antioxidant and detoxifying capacity of PACAP-deficient mice accompanying the increased vulnerability of these animals. Our results provide novel insight into the altered biochemical processes in mice lacking endogenous PACAP
    corecore