3 research outputs found

    NMR Reveals the Interplay among the AMSH SH3 Binding Motif, STAM2, and Lys63-Linked Diubiquitin.

    No full text
    We are indebted to the Research Federation FRABio (Univ. Lille, CNRS, FR 3688, FRABio, Biochmie Structurale et Fonctionnelle des Assemblages Biomoleculaires) for providing the scientific and technical environment conducive to achieving this work. We acknowledge Pr. Guy Lippens for helpful discussion related to the choice of the different AMSH variant peptides and Dr. Bernhard Brutscher for providing us a modified HNCO experiment to assign unambiguous NH2 side chain of asparagine.International audienceAMSH [associated molecule with a Src homology 3 domain of signal transducing adaptor molecule (STAM)] is one of the deubiquitinating enzymes associated in the regulation of endocytic cargo trafficking. It shows an exquisite selectivity for Lys63-linked polyubiquitin chains that are the main chains involved in cargo sorting. The first step requires the ESCRT-0 complex that comprises the STAM and hepatocyte growth factor-regulated substrate (Hrs) proteins. Previous studies have shown that the presence of the STAM protein increases the efficiency of Lys63-linked polyubiquitin chain cleavage by AMSH, one of the deubiquitinating enzyme involved in lysosomal degradation. In the present study, we are seeking to understand if a particular structural organization among these three key players is responsible for the stimulation of the catalytic activity of AMSH. To address this question, we first monitored the interaction between the ubiquitin interacting motif (UIM)-SH3 construct of STAM2 and the Lys63-linked diubiquitin (Lys63-Ub2) chains by means of NMR. We show that Lys63-Ub2 is able to bind either the UIM or the SH3 domain without any selectivity. We further demonstrate that the SH3 binding motif (SBM) of AMSH (AMSH-SBM) outcompetes Lys63-Ub2 for binding SH3. Additionally, we show how different AMSH-SBM variants, modified by their sequence and length, exhibit similar equilibrium dissociation constants when binding SH3 but significantly differ in their dissociation rate constants. Finally, we report the solution NMR structure of the AMSH-SBM/SH3 complex and propose a structural organization where the AMSH-SBM interacts with the STAM2-SH3 domain and contributes to the correct positioning of AMSH prior to polyubiquitin chains' cleavage

    Imaging active site chemistry and protonation states: NMR crystallography of the tryptophan synthase α-aminoacrylate intermediate.

    No full text
    NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze β-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate β-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue βLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cβ and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does
    corecore