710 research outputs found

    2-(1,4-Dioxo-1,4-dihydro-2-naphthyl)-2-methylpropanoic acid

    Get PDF
    The sterically crowded title compound, C₁₄H₁₂O₄, crystallizes as centrosymmetric hydrogen-bonded dimers involving the carboxyl groups. The naphthoquinone ring system is folded by 11.5 (1)° about a vector joining the 1,4-C atoms, and the quinone O atoms are displaced from the ring plane, presumably because of steric interactions with the bulky substituent

    An Afro-Asian nexus: South African multinational firm experiences in Chinese labour markets - key focus areas

    Get PDF
    This exploratory study examines perspectives of multinational corporations (MNCs) from South Africa (SA) in respect of the variables considered important in product and labour markets in China. These include how MNCs first interpret and understand cultural, human capital, regulatory factors and employment practices, before considering how they might adapt to or seek to influence them. A survey of thirteen SA firms operating or trading in these markets and interviews with South Africans who had undertaken exploratory assignments in China, were done. Key factors were identified and evaluated based on relevant literature and research. The following six focus areas were found to be important for business effectiveness in this market: understanding its market complexity, importance of joint venture partners, guanxi relationship networks, human capital, language and culture, and regulatory environment

    Efficacy of manual therapy treatments for people with cervicogenic dizziness and pain : Protocol of a randomised controlled trial

    Get PDF
    BACKGROUND: Cervicogenic dizziness is a disabling condition characterised by postural unsteadiness that is aggravated by cervical spine movements and associated with a painful and/or stiff neck. Two manual therapy treatments (Mulligan’s Sustained Natural Apophyseal Glides (SNAGs) and Maitland’s passive joint mobilisations) are used by physiotherapists to treat this condition but there is little evidence from randomised controlled trials to support their use. The aim of this study is to conduct a randomised controlled trial to compare these two forms of manual therapy (Mulligan glides and Maitland mobilisations) to each other and to a placebo in reducing symptoms of cervicogenic dizziness in the longer term and to conduct an economic evaluation of the interventions. METHODS: Participants with symptoms of dizziness described as imbalance, together with a painful and/or stiff neck will be recruited via media releases, advertisements and mail-outs to medical practitioners in the Hunter region of NSW, Australia. Potential participants will be screened by a physiotherapist and a neurologist to rule out other causes of their dizziness. Once diagnosed with cervciogenic dizziness, 90 participants will be randomly allocated to one of three groups: Maitland mobilisations plus range-of-motion exercises, Mulligan SNAGs plus self-SNAG exercises or placebo. Participants will receive two to six treatments over six weeks. The trial will have unblinded treatment but blinded outcome assessments. Assessments will occur at baseline, post-treatment, six weeks, 12 weeks, six months and 12 months post treatment. The primary outcome will be intensity of dizziness. Other outcome measures will be frequency of dizziness, disability, intensity of cervical pain, cervical range of motion, balance, head repositioning, adverse effects and treatment satisfaction. Economic outcomes will also be collected. DISCUSSION: This paper describes the methods for a randomised controlled trial to evaluate the effectiveness of two manual therapy techniques in the treatment of people with cervicogenic dizziness for which there is limited established evidence-based treatment. TRIAL REGISTRATION: ACTRN1261100007390

    Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone

    Get PDF
    AbstractA detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn>10–20%) and pools (Sn>20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL–mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4tonnes per annum over a 16m2 cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies

    High molecular mass intracellular proteases

    Full text link

    How are public engagement health festivals evaluated?:A systematic review with narrative synthesis

    Get PDF
    The evaluation of public engagement health festivals is of growing importance, but there has been no synthesis of its practice to date. We conducted a systematic review of evidence from the evaluation of health-related public engagement festivals published since 2000 to inform future evaluation. Primary study quality was assessed using the Mixed Methods Appraisal Tool. Extracted data were integrated using narrative synthesis, with evaluation methods compared with the Queen Mary University of London public engagement evaluation toolkit. 407 database records were screened; eight studies of varied methodological quality met the inclusion criteria. Evaluations frequently used questionnaires to collect mixed-methods data. Higher quality studies had specific evaluation aims, used a wider variety of evaluation methods and had independent evaluation teams. Evaluation sample profiles were often gender-biased and not ethnically representative. Patient involvement in event delivery supported learning and engagement. These findings and recommendations can help improve future evaluations. (Research Registry ID reviewregistry1021)

    Monitoring well utility in a heterogeneous DNAPL source zone area : Insights from proximal multilevel sampler wells and sampling capture-zone modelling

    Get PDF
    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation

    Influence of vertical flows in wells on groundwater sampling

    Get PDF
    Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10 m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken

    Revealing chlorinated ethene transformation hotspots in a nitrate-impacted hyporheic zone

    Get PDF
    Hyporheic zones are increasingly thought of as natural bioreactors, capable of transforming and attenuating groundwater pollutants present in diffuse baseflow. An underappreciated scenario in the understanding of contaminant fate hyporheic zones is the interaction between point-source trichloroethene (TCE) plumes and ubiquitous, non-point source pollutants such as nitrate. This study aims to conceptualise critical biogeochemical gradients in the hyporheic zone which govern the export potential of these redox-sensitive pollutants from carbon-poor, oxic aquifers. Within the TCE plume discharge zone, discrete vertical profiling of the upper 100 cm of sediment pore water chemistry revealed an 80% increase in dissolved organic carbon (DOC) concentrations and 20–60 cm thick hypoxic zones (50 mg L−1) create a large stoichiometric demand for bioavailable DOC in discharging groundwater. With the benefit of a high-resolution grid of pore water samplers investigating the shallowest 30 cm of hypoxic groundwater flow paths, we identified DOC-rich hotspots associated with submerged vegetation (Ranunculus spp.), where low-energy metabolic processes such as mineral dissolution/reduction, methanogenesis and ammonification dominate. Using a chlorine index metric, we show that enhanced TCE to cDCE transformation takes place within these biogeochemical hotspots, highlighting their relevance for natural plume attenuation
    corecore