5 research outputs found

    Progress towards Elimination of HIV Mother-to-Child Transmission in the Dominican Republic from 1999 to 2011

    Get PDF
    In 1999, prevention of mother-to-child transmission (pMTCT) using antiretrovirals was introduced in the Dominican Republic (DR). Highly active antiretroviral therapy (HAART) was introduced for immunosuppressed persons in 2004 and for pMTCT in 2008. To assess progress towards MTCT elimination, data from requisitions for HIV nucleic acid amplification tests for diagnosis of HIV infection in perinatally exposed infants born in the DR from 1999 to 2011 were analyzed. The MTCT rate was 142/1,274 (11.1%) in 1999?2008 and 12/302 (4.0%) in 2009?2011 (P \u3c .001), with a rate of 154/1,576 (9.8%) for both periods combined. This decline was associated with significant increases in the proportions of women who received prenatal HAART (from 12.3% to 67.9%) and infants who received exclusive formula feeding (from 76.3% to 86.1%) and declines in proportions of women who received no prenatal antiretrovirals (from 31.9% to 12.2%) or received only single-dose nevirapine (from 39.5% to 19.5%). In 2007, over 95% of DR pregnant women received prenatal care, HIV testing, and professionally attended delivery. However, only 58% of women in underserved sugarcane plantation communities (2007) and 76% in HIV sentinel surveillance hospitals (2003?2005) received their HIV test results. HIV-MTCT elimination is feasible but persistent lack of access to critical pMTCT measures must be addressed

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7

    Observation of the rare Bs0oμ+μB^0_so\mu^+\mu^- decay from the combined analysis of CMS and LHCb data

    No full text
    corecore