90 research outputs found

    Study of impact ionization coefficients in silicon with Low Gain Avalanche Diodes

    No full text
    Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for the impact ionization coefficients optimized to describe a large set of experimental data. We present pulsed infrared (IR)-laser-based gain measurements on five different types of 50ÎŒm50 \boldsymbol {\mu }\text{m} -thick LGADs from two different producers centro nacional de microelectrĂłnica (CNM) and Hamamatsu Photonics (HPK) performed in a temperature range from −15  ∘C- 15\,\,{^{\circ} }\text{C} to 40∘C40 {^{\circ} }\text{C} . Detailed technology computer-aided design (TCAD) device models are conceived based on secondary ion mass spectrometry (SIMS) doping profile measurements and tuning of the device models to measure C{C} – V{V} characteristics. Electric field profiles are extracted from the TCAD simulations and used as input to an optimization procedure (least squares fit) of the impact ionization model parameters to the experimental data. It is demonstrated that the new parameterizations give a good agreement between all measured data and TCAD simulations which is not achieved with the existing models. Finally, we provide an error analysis and compare the obtained values for the electron and hole impact ionization coefficients against existing models.Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on Low Gain Avalanche diodes (LGADs) and derive new parameterizations for the impact ionization coefficients optimized to describe a large set of experimental data. We present pulsed IR-laser based gain measurements on 5 different types of 50ÎŒm50\mu m-thick LGADs from two different producers (CNM and HPK) performed in a temperature range from −15oC-15^oC to 40oC40^oC. Detailed TCAD device models are conceived based on SIMS doping profiles measurements and tuning of the device models to measured C-V characteristics. Electric field profiles are extracted from the TCAD simulations and used as input to an optimization procedure (least squares fit) of the impact ionization model parameters to the experimental data. It is demonstrated that the new parameterizations give a good agreement between all measured data and TCAD simulations which is not achieved with the existing models. Finally, we provide an error analysis and compare the obtained values for the electron and hole impact ionization coefficients against existing models

    Gain layer degradation study after neutron and proton irradiations in Low Gain Avalanche Diodes

    No full text
    The high-luminosity upgrade of the ATLAS and CMS experiments includes dedicated sub-detectors to perform the time-stamping of minimum ionizing particles (MIPs). These detectors will be exposed up to fluences in the rangeof 1.5-2.5 × 1015^{15} neq_{eq}/cm2^{2} at the end of their lifetime and, Low Gain Avalanche Diode (LGAD) has been chosen as their baseline detection technology. To better understand the performance of LGAD detectors in these environments, a gain layer degradation study after neutron and proton irradiations up to a fluence of 1.5 × 1015^{15} neq_{eq}/cm2^{2} was performed. LGADs manufactured at Hamamatsu Photonics (HPK) and Centro Nacional de MicroelectrĂłnica (CNM-IMB) were chosen for this study and, a comparison in the gain layer degradation after exposure to reactor neutrons at the JoĆŸef Stefan Institute (JSI) in Ljubjana and 24 GeV/c protons at the CERN-PS is presented here.The high-luminosity upgrade of the ATLAS and CMS experiments includes dedicated sub-detectors to perform the time-stamping of minimum ionizing particles (MIPs). These detectors will be exposed up to fluences in the range of 1.5 - 2.5e15 neq/cm2 at the end of their lifetime and, Low Gain Avalanche Diode (LGAD) has been chosen as their baseline detection technology. To better understand the performance of LGAD detectors in these environments, a gain layer degradation study after neutron and proton irradiations up to a fluence of 1.5e15 neq/cm2 was performed. LGADs manufactured at Hamamatsu Photonics (HPK) and Centro Nacional de MicroelectrĂłnica (CNM-IMB) were chosen for this study and, a comparison in the gain layer degradation after exposure to reactor neutrons at the Jozef Stefan Institute (JSI) in Ljubjana and 24 GeV/c protons at the CERN-PS is presented here

    Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGCAL)

    No full text
    The high luminosity LHC (HL-LHC or Phase-II) is expected to increase the instantaneous luminosity of the LHC by a factor of about five, delivering about 250 fba-1 per year between 2025 and 2035. Under these conditions the performance degradation of detectors due to integrated radiation dose/fluence will need to be addressed. The CMS collaboration is planning to upgrade many components, including the forward calorimeters. The replacement for the existing endcap preshower, electromagnetic and hadronic calorimeters is called the High Granularity Calorimeter (HGCAL) and it will be realized as a sampling calorimeter, including 30 layers of silicon detectors totalling 600m^2. The sensors will be realized as pad detectors with cell sizes of between 0.5-1.0 cm^2 and an active thickness between 100 um and 300 um depending on their location in the endcaps the thinner sensors will be used in the highest radiation environment. For an integrated luminosity of 3000 fba-1, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences of 10x16 n/cm^2 in the worst case. A tolerance study after neutron irradiation of 300 um, 200 um and 100 um n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6x10 16 n/cm^2 is presented. The main properties of these diodes have been studied before and after irradiation leakage current, capacitance, charge collection efficiency, annealing effects, timing capability. As expected, the results show a good performance even after the most extreme irradiation

    Defect characterization studies on neutron irradiated boron-doped silicon pad diodes and Low Gain Avalanche Detectors

    No full text
    High-energy physics detectors with internal charge multiplication, like Low Gain Avalanche Detectors (LGADs), that will be used for fast timing in the High Luminosity LHC experiments, have to exhibit a significant radiation tolerance. In this context, the impact of radiation on the highly boron-doped gain layer is of particular interest, since due to the so-called Acceptor Removal Effect (ARE) a radiation-induced deactivation of active boron dopants takes place, that is causing a progressive loss in the gain with increasing irradiation level. In this paper we present defect-spectroscopy measurements (Deep-Level Transient Spectroscopy and Thermally Stimulated Current technique) on neutron, proton and electron irradiated p-type silicon pad diodes of different resistivity as well as LGADs neutron irradiated at fluences up to 1×1015 neq/cm2. We show that compared to silicon pad diodes the determination of LGAD defect introduction rates is less straightforward as they are strongly influenced by the impact of the gain layer. The measured gain layer capacitance has a strong frequency and temperature dependence which makes DLTS measurements challenging to perform with results difficult to interpret. With the TSC technique the defects formed in the LGADs are nicely observed and can be compared to the defects formed in the silicon pad diodes. However, the exact assignment of defects to the gain layer or bulk region remains challenging and the charge amplification effect of the LGADs impacts the exact determination of defect concentrations. We also demonstrate that, depending on the TSC measurement conditions, defect induced internal electric fields are built up in the irradiated LGADs which impact the signal current. ‱Presentation of defect spectroscopy studies (DLTS, TSC) on irradiated LGADs‱Significant impact of the highly doped gain layer on the defect spectroscopy results‱Measured gain layer capacitance shows strong frequency and temperature dependence‱Defect induced internal electrical fields can be built up in irradiated LGADs‱BiOi introduction rates for neutron, electron and proton irradiated diodes are givenHigh-energy physics detectors, like Low Gain Avalanche Detectors (LGADs) that will be used as fast timing detectors in the High Luminosity LHC experiments, have to exhibit a significant radiation tolerance. Thereby the impact of radiation on the highly boron-doped gain layer that enables the internal charge multiplication, is of special interest, since due to the so-called Acceptor Removal Effect (ARE) a radiation-induced deactivation of active boron dopants takes place. In this paper we present defect-spectroscopy measurements (Deep-Level Transient Spectroscopy and Thermally Stimulated Current technique) on neutron irradiated p-type silicon pad diodes of different resistivity as well as LGADs irradiated at fluences up to 1 x 10^15 neq/cm2. Thereby we show that while for the silicon pad diodes irradiated with electrons, neutrons or protons the determination of defect electronic properties and defect introduction rates is straightforward, DLTS and TSC measurements on LGADs are strongly influenced by the impact of the gain layer. It is shown that the measurability of the capacitance of the gain layer shows a strong frequency and temperature dependence leading to a capacitance drop in DLTS and non-reliable measurement results. With TSC defects formed in the LGADs can be very nicely observed and compared to the defects formed in the silicon pad diodes. However the exact assignment of defects to the gain layer or bulk region remains challenging and the charge amplification effect of the LGADs impacts the exact determination of defect concentrations. Additionally, we will demonstrate that depending on the TSC measurement conditions defect induced residual internal electric fields are built up in the irradiated LGADs that are influencing the current signal of carriers emitted from the defect states

    First Results on 3D Pixel Sensors Interconnected to the RD53A Readout Chip after Irradiation to 1×1\times101610^{16}\,neq cm−2^{-2}

    No full text
    Results obtained with 3D columnar pixel sensors bump-bonded to the RD53A prototype readout chip are reported. The interconnected modules have been tested in a hadron beam before and after irradiation to a fluence of about 1×1\times101610^{16}\,neq cm−2^{-2} (1\,MeV equivalent neutrons). All presented results are part of the CMS R\&D activities in view of the pixel detector upgrade for the High Luminosity phase of the LHC at CERN (HL-LHC). A preliminary analysis of the collected data shows hit detection efficiencies around 97\% measured after proton irradiation

    Test beam characterization of irradiated 3D pixel sensors

    No full text
    Due to the large expected instantaneous luminosity, the future HL-LHC upgrade sets strong requirements on the radiation hardness of the CMS detector Inner Tracker. Sensors based on 3D pixel technology, with its superior radiation tolerance, comply with these extreme conditions. A full study and characterization of pixelated 3D sensors fabricated by FBK is presented here. The sensors were bump-bonded to RD53A readout chips and measured at several CERN SPS test beams. Results on charge collection and efficiency, for both irradiated and non-irradiated samples, are presented. Two main studies are described: in the first the behaviour of the sensor is qualified as a function of irradiation, while kept under identical conditions; in the second the response is measured under typical operating conditions

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text
    The strategies for and the performance of the CMS silicon tracking system alignment during the 2015-2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. Alignment scenarios are also derived for use in the simulation of the detector response. Systematic effects, related to intrinsic symmetries of the alignment task or to external constraints, are discussed and illustrated for different scenarios.We acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: the Austrian Federal Ministry of Education, Science and Research and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP); the Bulgarian Ministry of Education and Science, and the Bulgarian National Science Fund; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Ministerio de Ciencia TecnologĂ­a e InnovaciĂłn (MINCIENCIAS), Colombia; the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research and Innovation Foundation, Cyprus; the Secretariat for Higher Education, Science, Technology and Innovation, Ecuador; the Ministry of Education and Research, Estonian Research Council via PRG780, PRG803 and PRG445 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique NuclĂ©aire et de Physique des Particules / CNRS, and Commissariat Ă  l’Énergie Atomique et aux Énergies Alternatives / CEA, France; the Bundesministerium fĂŒr Bildung und Forschung, the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256 - GRK2497, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Innovation, Greece; the National Research, Development and Innovation Fund, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Ministry of Education and Science of the Republic of Latvia; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Ministry of Science of Montenegro; the Mexican Funding Agencies (BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a CiĂȘncia e a Tecnologia, grants CERN/FIS-PAR/0025/2019 and CERN/FIS-INS/0032/2019, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, the Russian Foundation for Basic Research, and the National Research Center “Kurchatov Institute”; the Ministry of Education, Science and Technological Development of Serbia; the SecretarĂ­a de Estado de InvestigaciĂłn, Desarrollo e InnovaciĂłn, Programa Consolider-Ingenio 2010, Plan Estatal de InvestigaciĂłn CientĂ­fica TĂ©cnica de InnovaciĂłn 2017–2020, research project IDI-2018-000174 del Principado de Asturias, and Fondo Europeo de Desarrollo Regional, Spain; the Ministry of Science, Technology and Research, Sri Lanka; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union) the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation Ă  la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the LendĂŒlet (“Momentum”) Programme and the JĂĄnos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Scientific and Industrial Research, India; the Latvian Council of Science; the National Science Center (Poland), contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861; the Fundação para a CiĂȘncia e a Tecnologia, grant FCT CEECIND/01334/2018; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, projects no. 14.W03.31.0026 and no. FSWW-2020-0008, and the Russian Foundation for Basic Research, project No. 19-42-703014 (Russia); the Programa de Excelencia MarĂ­a de Maeztu, and the Programa Severo Ochoa del Principado de Asturias; the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA)

    Strategic R&D Programme on Technologies for Future Experiments - Annual Report 2020

    No full text
    This report summarises the activities and achievements of the strategic R&D programme on technologies for future experiments in the year 2020

    Strategic R&D Programme on Technologies for Future Experiments - Annual Report 2021

    No full text
    This report summarises the activities and main achievements of the CERN strategic R&D programme on technologies for future experiments during the year 2021

    Annual Report 2022

    No full text
    This report summarises the activities and main achievements of the CERN strategic R&D programme on technologies for future experiments during the year 202
    • 

    corecore