12 research outputs found
Recent changes of water discharge and sediment load in the Yellow River basin, China
The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613
The current state of the use of large wood in river restoration and management
Trees fall naturally into rivers generating flow heterogeneity, inducing geomorphological features, and creating habitats for biota. Wood is increasingly used in restoration projects and the potential of wood acting as leaky barriers to deliver natural flood management by âslowing the flowâ is recognised. However, wood in rivers can pose a risk to infrastructure and locally increase flood hazards. The aim of this paper is to provide an up-to-date summary of the benefits and risks associated with using wood to promote geomorphological processes to restore and manage rivers. This summary was developed through a workshop that brought together academics, river managers, restoration practitioners and consultants in the UK to share science and best-practice on wood in rivers. A consensus was developed on four key issues: (i) hydro-geomorphological effects, (ii) current use in restoration and management, (iii) uncertainties and risks, and (iv) tools and guidance required to inform process-based restoration and management
Soil Property Control of Biogeochemical Processes beneath Two Subtropical Stormwater Infiltration Basins
The aim of this paper is two-fold: On one hand, we discuss an abstract approach to symmetrized Fredholm perturbation determinants and an associated trace formula for a pair of operators of positive type, extending a classical trace formula. On the other hand, we continue a recent systematic study of boundary data maps, that is, 2Ă2 matrix-valued Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with one-dimensional Schrödinger operators on a compact interval [0, R] with separated boundary conditions at 0 and R. One of the principal new results in this paper reduces an appropriately symmetrized (Fredholm) perturbation determinant to the 2Ă2 determinant of the underlying boundary data map. In addition, as a concrete application of the abstract approach in the first part of this paper, we establish the trace formula for resolvent differences of self-adjoint Schrödinger operators corresponding to different (separated) boundary conditions in terms of boundary data maps. 2011 London Mathematical Society2011 © 2011 London Mathematical Society