10 research outputs found

    Mars rover mechanisms designed for Rocky 4

    Get PDF
    A Mars rover prototype vehicle named Rocky 4 was designed and built at JPL during the fall of 1991 and spring 1992. This vehicle is the fourth in a series of rovers designed to test vehicle mobility and navigation software. Rocky 4 was the first attempt to design a vehicle with 'flight like' mass and functionality. It was consequently necessary to develop highly efficient mechanisms and structures to meet the vehicles very tight mass limit of 3 Kg for the entire mobility system (7 Kg for the full system). This paper will discuss the key mechanisms developed for the rover's innovative drive and suspension system. These are the wheel drive and strut assembly, the rocker-bogie suspension mechanism and the differential pivot. The end-to-end design, analysis, fabrication and testing of these components will also be discussed as will their performance during field testing. The lessons learned from Rocky 4 are already proving invaluable for the design of Rocky 6. Rocky 6 is currently being designed to fly on NASA's MESUR mission to Mars scheduled to launch in 1996

    Umbilical Deployment Device

    Get PDF
    The landing scheme for NASA's next-generation Mars rover will encompass a novel landing technique (see figure). The rover will be lowered from a rocket-powered descent stage and then placed onto the surface while hanging from three bridles. Communication between the rover and descent stage will be maintained through an electrical umbilical cable, which will be deployed in parallel with structural bridles. The -inch (13-mm) umbilical cable contains a Kevlar rope core, around which wires are wrapped to create a cable. This cable is helically coiled between two concentric truncated cones. It is deployed by pulling one end of the cable from the cone. A retractable mechanism maintains tension on the cable after deployment. A break-tie tethers the umbilical end attached to the rover even after the cable is cut after touchdown. This break-tie allows the descent stage to develop some velocity away from the rover prior to the cable releasing from the rover deck, then breaks away once the cable is fully extended. The descent stage pulls the cable up so that recontact is not made. The packaging and deployment technique can store a long length of cable in a relatively small volume while maintaining compliance with the minimum bend radius requirement for the cable being deployed. While the packaging technique could be implemented without the use of break-ties, they were needed in this design due to the vibratory environment and the retraction required by the cable. The break-ties used created a series of load-spikes in the deployment signature. The load spikes during the deployment of the initial three coils of umbilical showed no increase between the different temperature trials. The cold deployment did show an increased load requirement for cable extraction in the region where no break-ties were used. This increase in cable drag was superimposed on the loads required to rupture the last set of break-ties, and as such, these loads saw significant increase when compared to their ambient counterparts. While the loads showed spikes of high magnitude, they were of short duration. Because of this, neither the deployment of the rover, nor the motion of the descent stage, would be adversely affected. In addition, the umbilical was found to have a maximum of 1.2 percent chance for recontact with the ultra-high frequency antenna due to the large margin of safety built in

    Separation and Sealing of a Sample Container Using Brazing

    Get PDF
    A special double-wall container and a process for utilizing the container are being developed to enable (1) acquisition of a sample of material in a dirty environment that may include a biological and/or chemical hazard; (2) sealing a lid onto the inner part of the container to hermetically enclose the sample; (3) separating the resulting hermetic container from the dirty environment; and (4) bringing that hermetic container, without any biological or chemical contamination of its outer surface, into a clean environment. The process is denoted S(exp 3)B (separation, seaming, and sealing using brazing) because sealing of the sample into the hermetic container, separating the container from the dirty environment, and bringing the container with a clean outer surface into the clean environment are all accomplished simultaneously with a brazing operation

    Dropping in on Mars

    No full text
    Here I was: 26 years old, I had never worked on a flight project before, and all eyes were on me. Every time I walked by the Pathfinder project office, Tony Spear, the project manager, would throw his arm around me and announce, 'Hey everybody, the whole mission is riding on this guy right here.' Our task was to design and build airbags for Pathfinder s landing on Mars - an approach that had never been used on any mission. Airbags may seem like a simple, low-tech product, but it was eye-opening to discover just how little we knew about them. We knew that the only way to find out what we needed to learn was to build prototypes and test them. We just didn t know how ignorant we were going to be. Airbags seemed like a crazy idea to a lot of people. Nobody ever said that, mind you, but there seemed to be a widespread feeling that the airbags weren t going to work. 'We ll let you guys go off and fool around until you fall flat on your faces.' That was the unspoken message I received day after day

    Development and Testing of a New Family of Supersonic Decelerators

    No full text
    The state of the art in Entry, Descent, and Landing systems for Mars applications is largely based on technologies developed in the late 1960's and early 1970's for the Viking Lander program. Although the 2011 Mars Science Laboratory has made advances in EDL technology, these are predominantly in the areas of entry (new thermal protection systems and guided hypersonic flight) and landing (the sky crane architecture). Increases in entry mass, landed mass, and landed altitude beyond MSL capabilities will require advances predominantly in the field of supersonic decelerators. With this in mind, a multi-year program has been initiated to advance three new types of supersonic decelerators that would enable future large-robotic and human-precursor class missions to Mars

    Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    No full text
    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort

    Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions

    No full text
    The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system

    Aerodynamic Characterization of New Parachute Configurations for Low-Density Deceleration

    No full text
    The Low Density Supersonic Decelerator project performed a wind tunnel experiment on the structural design and geometric porosity of various sub-scale parachutes in order to inform the design of the 110ft nominal diameter flight test canopy. Thirteen different parachute configurations, including disk-gap-band, ring sail, disk sail, and star sail canopies, were tested at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at NASA Ames Research Center. Canopy drag load, dynamic pressure, and canopy position data were recorded in order to quantify there lative drag performance and stability of the various canopies. Desirable designs would yield increased drag above the disk-gap-band with similar, or improved, stability characteristics. Ring sail parachutes were tested at geometric porosities ranging from 10% to 22% with most of the porosity taken from the shoulder region near the canopy skirt. The disk sail canopy replaced the rings lot portion of the ring sail canopy with a flat circular disk and wastested at geometric porosities ranging from 9% to 19%. The star sail canopy replaced several ringsail gores with solid gores and was tested at 13% geometric porosity. Two disk sail configurations exhibited desirable properties such as an increase of 6-14% in the tangential force coefficient above the DGB with essentially equivalent stability. However, these data are presented with caveats including the inherent differences between wind tunnel and flight behavior and qualitative uncertainty in the aerodynamic coefficients

    To Land on Europa

    No full text
    The Science Definition Team (SDT) for NASA's Jupiter Icy Moons Orbiter (JIMO) Mission recommends including a lander as an integral part of the science payload of the JIMO Mission. The Europa Surface Science Package (ESSP) could comprise up to 25% of science payload resources. We have identified several key scientific and technical issues for such a lander, including 1) the potential effects of propellant contamination of the landng site, 2) the likely macroscopic surface roughness of potential landing sites, and 3) the desire to sample materials from depths of approximately 1 m beneath the surface. Discussion and consensus building on these issues within the science community is a prerequisite for establishing design requirements

    Low Density Supersonic Decelerator Parachute Decelerator System

    No full text
    The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed
    corecore