10,350 research outputs found

    An interaction Lagrangian for two spin 1/2 elementary Dirac particles

    Get PDF
    The kinematical formalism for describing spinning particles developped by the author is based upon the idea that an elementary particle is a physical system with no excited states. It can be annihilated by the interaction with its antiparticle but, if not destroyed, its internal structure can never be modified. All possible states of the particle are just kinematical modifications of any one of them. The kinematical state space of the variational formalism of an elementary particle is necessarily a homogeneous space of the kinematical group of spacetime symmetries. By assuming Poincare invariance we have already described a model of a classical spinning particle which satisfies Dirac's equation when quantized. We have recently shown that the spacetime symmetry group of this Dirac particle is larger than the Poincare group. It also contains spacetime dilations and local rotations. In this work we obtain an interaction Lagrangian for two Dirac particles, which is invariant under this enlarged spacetime group. It describes a short- and long-range interaction such that when averaged, to supress the spin content of the particles, describes the instantaneous Coulomb interaction between them. As an application, we analyse the interaction between two spinning particles, and show that it is possible the existence of metastable bound states for two particles of the same charge, when the spins are parallel and provided some initial conditions are fulfilled. The possibility of formation of bound pairs is due to the zitterbewegung spin structure of the particles because when the spin is neglected, the bound states vanish

    Sorption of apolar pesticides by units of benzoic acid propyl ester in cyclic phosphazene

    Get PDF
    Indexación: Scopus.The effects of temperature, pH and agitation time (equilibrium) on the adsorption process of different pesticides on N3P3(OC6H4COOCH2CH2CH3)6 was studied. With optimal conditions experimental, the adsorption isotherms have been realized with through Langmuir and Freundlich models. Pesticides are compounds used mainly in agriculture to control various species (plants, insects, worms, fungi). Due to their physicochemical properties, they can remain for a long time in the application sites, bioaccumulating and moving between environmental compartments which generate various environmental problems. The results obtained showed a physisorption mechanism for the fve pesticides studied, with higher sorption for: azinphos methyl (93,5 mg kg-1), carbaryl (290.5 mg kg-1) and carbofuran (580.5 mg kg-1) at 20 ° C, according to the models used. © 2018 Sociedad Chilena de Quimica. All rights reserved.https://scielo.conicyt.cl/pdf/jcchems/v62n4/0717-9324-jcchems-62-04-3783.pd

    The dynamical equation of the spinning electron

    Full text link
    We obtain by invariance arguments the relativistic and non-relativistic invariant dynamical equations of a classical model of a spinning electron. We apply the formalism to a particular classical model which satisfies Dirac's equation when quantised. It is shown that the dynamics can be described in terms of the evolution of the point charge which satisfies a fourth order differential equation or, alternatively, as a system of second order differential equations by describing the evolution of both the center of mass and center of charge of the particle. As an application of the found dynamical equations, the Coulomb interaction between two spinning electrons is considered. We find from the classical viewpoint that these spinning electrons can form bound states under suitable initial conditions. Since the classical Coulomb interaction of two spinless point electrons does not allow for the existence of bound states, it is the spin structure that gives rise to new physical phenomena not described in the spinless case. Perhaps the paper may be interesting from the mathematical point of view but not from the point of view of physics.Comment: Latex2e, 14 pages, 5 figure

    FERROCENYL ALKYLAMMONIUM N-SUBSTITUTED POLYPYRROLE CONTAINING Pt AND Pd AND ITS APPLICATION ON ELECTROANALYSIS OF ARSENITE

    Get PDF
    Indexación: Web of Science; Scopus; Scielo.Arsenic occurs in a variety of forms and oxidation states and is a very toxic element. The main inorganic arsenic species present in natural waters are arsenate (oxidation state V) and arsenite ions (oxidation state III). Arsenite is more toxic and mobile than arsenate. Therefore, it is important the development of new materials for analysis and control of these toxic species. This research proves that polymer-metal composite electrode materials synthesized by incorporation of Pt-0 and Pd-0 nanoparticles into a poly(pyrrole-ferrocenyl alkylammonium) matrix present electrocatalytic properties towards the oxidation of arsenite to arsenate. The polymer films displayed a stable electrochemical response in aqueous solution. However, when the polymer film modified electrode were transferred to aqueous solution in presence of arsenite anions, the CV curves for polymer films were deeply modified by the decrease in the electroactivity of the film. It can be concluded that the cationic polymer films present a strong affinity toward arsenite anions. The composite films containing Pt-0 or Pd-0 showed catalytic activity towards oxidation of As(III) to As(V) due to the presence of metal catalyst particles into the polymer films.http://ref.scielo.org/dgdvx

    Towards understanding the design of dual-modal MR/fluorescent probes to sense zinc ions

    Get PDF
    A series of gadolinium complexes were synthesised in order to test the design of dual-modal probes that display a change in fluorescence or relaxivity response upon binding of zinc. A dansyl-DO3ATA gadolinium complex [GdL1] displayed an increase and a slight blue-shift in fluorescence in the presence of zinc; however, a decrease in relaxation rate was observed. Consequently, the ability of the well-known zinc chelator, BPEN, was assessed for relaxivity response when conjugated to the gadolinium chelate. The success of this probe [GdL2], lead to the inclusion of the same zinc-probing moiety alongside a longer wavelength emitting fluorophore, rhodamine [GdL3], to arrive at the final iteration of these first generation dual-modal zinc-sensing probes. The compounds give insight into the design protocols required for the successful imaging of zinc ions
    corecore