137 research outputs found
Guidelines for reporting and analysing laboratory test results for biomass cooking stoves
One of the key challenges in the evaluation of Improved Cooking Stoves (ICSs) performance is the correct interpretation of test results. Indeed, a large amount of the reports or studies in the literature provide results that do not allow drawing any statistically significant conclusion, thus leading to possible misinterpretations. These Guidelines are conceived as a support to all the actors involved in sector of biomass stoves performance evaluation, from the technicians and researchers engaged in laboratory testing, to those who need to better understand and interpret test results in order to select a promising stove model for field trials. The concepts and the methodology here proposed draw upon the most recent studies in the scientific literature on this topi
Posterior Assessment of Parameters in a Time Domain Random Walk Model of Partitioning Tracer Tests in Two‐Phase Flow Scenarios
We provide a reliable and efficient methodological framework for the interpretation of laboratory-scale partitioning tracer test data under uncertainty. The proposed approach rests on a Time domain random walk (TDRW) particle tracking methodology. The range of applicability of the latter is extended to include transport of partitioning tracers upon considering retardation and trapping mechanisms. A classical maximum likelihood (ML) approach is applied considering the extensive set of experimental observations of Dwarakanath et al. (1999, ). This yields best estimates of model parameters, including residual immobile phase saturation, the partition coefficient and the parameters of the memory function employed to simulate the impact of solute trapping. Experimental observations of the partition coefficient are included in the objective function upon relying on a regularization term. We show that considering these types of information, which are typically obtained through batch experiments, is important to attain joint estimates of the partition coefficient and of residual immobile phase saturation. Sample probability distributions of model parameters conditional on available data are then assessed through a stochastic inverse modeling approach. This step poses a signi?cant challenge in terms of computational effort and is performed through a reduced order surrogate model. Our results show that the TDRW-based approach can effectively capture the key features of the observed breakthrough curves of the various partitioning tracers analyzed and provide satisfactory estimates of residual immobile phase saturation
Energy Technologies for Food Utilization for Displaced People: from identification to evaluation
By end-2014, the number of forcibly displaced people in the World was 59.5 million, the highest after the II World War. UNHCR (2015) reports that they are 19.5 million refugees, 38.2 internally displaced persons (IDPs) and 1.8 asylum-seekers, and they have been progressively increased in number for the last 4 years, with an estimation of 13.9 newly displaced in 2014. Such people have several needs, especially in terms of food security. Humanitarian actors usually try to address them focusing on food availability and access, while food utilization is often neglected (Haver K., Harmer A., Taylor G., 2013). The utilization of food, including the access to drinking water, is one of the four pillars of food security, and affects food properties in terms of nutritional intake, especially micronutrients, and healthiness (European Commission, 2009). Appropriate technologies for cooking, food preservation, and water purification are required, but all of them entail the access to fuel or other energy sources. Indeed, access to energy for displaced people is very important from different perspectives, but it is often problematic, and entails five key challenges: “protection, relations between hosts and displaced people, environmental problems, household energy-related natural resource restrictions and livelihood-related challenges” (Lyytinen 2009, pag. 1). The importance of energy for development was pointed out by the Sustainable Energy for All (SE4All) Initiative, while Safe Access to Fuel and Energy (SAFE) focused the attention on crisis-affected populations, in particular refugees and IDPs (SAFE, 2015). Indeed, if people living in camps, and similarly in informal settlements, are provided with energy services, they may access to a wide range of opportunities to change their condition, and conduct a more productive and active life (Bellanca, 2014). Unfortunately, several gaps are still present in humanitarian response for providing displaced people with an adequate access to energy, and studies are few, mainly related to stoves and generally without an independent impact assessment (Gunning, 2014). Very few displaced people have access to modern forms of energy: generally their practices are unsustainable, with average household costs of at least 200 USD per year (family of five) and disproportionate CO2 emission compared to quantity and quality of energy finally utilized (Lahn & Grafham, 2015). Therefore, the gap in giving the right importance to energy access – in particular in linking relief, rehabilitation and development – is clear
Effects of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells
We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities of elementary cells of porous media. These constitute a key element upon which upscaling frameworks are typically grounded. In our study we focus on state immiscible two-phase flow taking place at the scale of elementary cells. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that the relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths, called principal pathways, giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the elementary cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, the relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale
Laboratory testing of the innovative low-cost Mewar Angithi insert for improving energy efficiency of cooking tasks on three-stone fires in critical contexts
Currently, about 2.7 billion people across the world still lack access to clean cooking means. Humanitarian emergencies and post-emergencies are among the most critical situations: the utilization of traditional devices such as three-stone fires have a huge negative impact not only on food security but also on the socio-economic status of people, their health and the surrounding environment. Advanced Cooking Stoves may constitute better systems compared to actual ones, however, financial, logistic and time constraints have strongly limited the interventions in critical contexts until now. The innovative, low-cost Mewar Angithi insert for improving energy efficiency of three-stone fires may play a role in the transition to better cooking systems in such contexts. In this paper, we rely on the Water Boiling Test 4.2.3 to assess the performances of the Mewar Angithi insert respect to a traditional three-stone fire and we analyse the results through a robust statistical procedure. The potentiality and suitability of this novel solution is discussed for its use in critical contexts
Long-term energy planning and demand forecast in remote areas of developing countries: Classification of case studies and insights from a modelling perspective
More than half a billion people will still lack reliable and affordable electricity in 2040 and around 1.8 billion may remain reliant on traditional solid biomass for cooking. Long-term energy planning could help to achieve the energy access targets in developing countries, especially in remote rural areas.
Different studies exist on long-term rural electricity and thermal energy planning, but the different foci, terminology and methodologies make it difficult to track their similarities, weaknesses and strengths. With this work, we aim at providing a critical analysis of peer-reviewed studies on long-term rural energy planning, to help researchers in the field move across the diverse know-how developed in the last decades.
The work resulted in the analysis of 130 studies and categorisation of 85 of them that focus on electricity, thermal energy, and oil supply in rural areas, under a number of rules clearly defined in the first part of the paper. We classify the studies in two consecutive steps, first according to their type and afterwards according to the methodology they employ to forecast the energy demand, which is one the most critical aspects when dealing with long-term rural energy planning.
The work also provides specific insights, useful to researchers interested in rural energy modelling. Few studies assume a dynamic demand over the years and most of them do not consider any evolution of the future energy load, or forecast its growth through arbitrary trends and scenarios. This however undermines the relevance of the results for the purpose of long-term planning and highlights the necessity of further developing the forecasting methodologies. We conclude that bottom-up approaches, system-dynamics and agent-based models seem appropriate approaches to forecast the evolution of the demand for energy in the long-term; we analyse their potential capability to tackle the context-specific complexities of rural areas and the nexus causalities among energy and socio-economic dynamics
Reversible Holmes Tremor due to Middle Cerebral Artery Giant Aneurysm
A 40-year-old man presented with a 6-month history of mild but worsening tremor of variable intensity. The patient had a focal, irregular, rest and action tremor of middle amplitude and low frequency (about 4 Hz), limited to his right arm with oscillatory motion around the elbow. It was present inconsistently at rest, particularly during emotional activation, and enhanced by posture maintenance. It was evoked by various positions and tasks. Particularly, the tremor was present during fine motor skills such as writing, and it was increased by drinking and shaving, showing a minimal intentional component. The patient also reported slight loss in manual dexterity in his right hand
Electricity access and rural development: Review of complex socio-economic dynamics and causal diagrams for more appropriate energy modelling
The causal relationships between electrification and development of poor, rural communities are complex and contextual. The existing literature focuses mainly on the impact of rural electrification and electricity use on local socio-economic development, while the reverse feedbacks of various social and economic changes on electricity demand and supply have not been fully characterized. Most electricity access impact assessments assume linear, one-way effects and linear growth in electricity demand. However, the projections rarely match the reality, creating challenges for rural utilities. From a modelling perspective, the lack of attention to dynamic complexities of the electricity-development nexus prevents the appropriate modelling of electricity demand over time and, hence, informed planning for and sizing of power plants. With the goal to improve modelling of the electricity-development nexus, we undertake a comprehensive review and extensive analysis of the peer-reviewed literature on electricity access and its impact on rural socio-economic development, and vice versa. We characterize and describe the nexus between electricity access and development through graphical casual diagrams that allow us to capture, visualise and discuss the complexity and feedback loops. Based on this, we suggest guidelines for developing appropriate models able to include and simulate such complexities. Our analysis confirms that electricity use is interconnected through complex casual relations with multiple dimensions of socio-economic development, viz. income generating activities, market production and revenues, household economy, local health and population, education, and habits and social networks. The casual diagrams can be seen as a first step of the conceptualization phase of model building, which aims at describing and understanding the structure of a system. The presence of multiple uncertain parameters and complex diffusion mechanisms that describe the complex system under analysis suggests that systems-dynamic simulations can allow modelling such complex and dynamic relations, as well as dealing with the high uncertainties at stake, especially when coupled with stochastic approaches
Semitransparent Organic Photovoltaic Devices: Interface/Bulk Properties and Stability Issues
In the present work, an insight on the morpho/structural properties of semitransparent organic devices for buildings’ integrated photovoltaics is presented, and issues related to interface and bulk stability are addressed. The organic photovoltaic (OPV) cells under investigation are characterized by a blend of PM6:Y6 as a photo-active layer, a ZnO ETL (electron transporting layer), a HTL (hole transporting layer) of HTL-X and a transparent electrode composed by Ag nanowires (AgNWs). The devices’ active nanomaterials, processed as thin films, and their mutual nanoscale interfaces are investigated by a combination of in situ Energy Dispersive X-ray Reflectometry (EDXR) and ex situ Atomic Force Microscopy (AFM), X-ray Diffraction (XRD) and micro-Raman spectroscopy. In order to discriminate among diverse concomitant aging pathways potentially occurring upon working conditions, the effects of different stress factors were investigated: light and temperature. Evidence is gained of an essential structural stability, although an increased roughness at the ZnO/PM6:Y6 interface is deduced by EDXR measurements. On the contrary, an overall stability of the system subjected to thermal stress in the dark was observed, which is a clear indication of the photo-induced origin of the observed degradation phenomenon. Micro-Raman spectroscopy brings light on the origin of such effect, evidencing a photo-oxidation process of the active material in the device, using hygroscopic organic HTL, during continuous illumination in ambient moisture conditions. The process may be also triggered by a photocatalytic role of the ZnO layer. Therefore, an alternative configuration is proposed, where the hygroscopic HTL-X is replaced by the inorganic compound MoOx. The results show that such alternative configuration is stable under light stress (solar simulator), suggesting that the use of Molybdenum Oxide, limiting the photo-oxidation of the bulk PM6:Y6 active material, can prevent the cell from degradation
Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation
BACKGROUND:
It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams.
OBJECTIVES:
To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases.
METHODS:
A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions.
RESULTS:
The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache.
CONCLUSIONS:
Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape
- …