26 research outputs found
Early postoperative MRI overestimates residual tumour after resection of gliomas with no or minimal enhancement
Standards for residual tumour measurement after resection of gliomas with no or minimal enhancement have not yet been established. In this study residual volumes on early and late postoperative T2-/FLAIR-weighted MRI are compared. A retrospective cohort included 58 consecutive glioma patients with no or minimal preoperative gadolinium enhancement. Inclusion criteria were first-time resection between 2007 and 2009 with a T2-/FLAIR-based target volume and availability of preoperative, early (<48 h) and late (1-7 months) postoperative MRI. The volumes of non-enhancing T2/FLAIR tissue and diffusion restriction areas were measured. Residual tumour volumes were 22% smaller on late postoperative compared with early postoperative T2-weighted MRI and 49% smaller for FLAIR-weighted imaging. Postoperative restricted diffusion volume correlated with the difference between early and late postoperative FLAIR volumes and with the difference between T2 and FLAIR volumes on early postoperative MRI. We observed a systematic and substantial overestimation of residual non-enhancing volume on MRI within 48 h of resection compared with months postoperatively, in particular for FLAIR imaging. Resection-induced ischaemia contributes to this overestimation, as may other operative effects. This indicates that early postoperative MRI is less reliable to determine the extent of non-enhancing residual glioma and restricted diffusion volumes are imperativ
Lateralized cognitive processes and lateralized task control in the human brain
The principles underlying human hemispheric specialization are poorly understood. We used functional magnetic resonance imaging of letter and visuospatial decision tasks with identical word stimuli to address two unresolved problems. First, hemispheric specialization depended on the nature of the task rather than on the nature of the stimulus. Second, analysis of frontal candidate regions for cognitive control showed increased coupling between left anterior cingulate cortex (ACC) and left inferior frontal gyrus during letter decisions, whereas right ACC showed enhanced coupling with right parietal areas during visuospatial decisions. Cognitive control is thus localized in the same hemisphere as task execution