8 research outputs found

    Effects of Individual Sweet Bran Components in Beef Finishing Diets on Nutrient Digestion

    Get PDF
    Sweet Bran is a branded wet corn gluten feed recognized for improving rumen health, energy intake, and gains in finishing cattle. Eight ruminally cannulated steers were utilized in a replicated 4 x 4 Latin Square design to evaluate the effect of individual Sweet Bran components on total tract digestibility and rumen fermentation parameters. Three Sweet Bran components (solvent extracted germ meal, corn bran, and mixed steep) were included at 40% of diet dry matter in their respective treatment, with a steam-flaked corn control diet. Total tract dry matter and organic matter digestibility were least for bran, intermediate for solvent extracted germ meanl, and greatest for steep and control diets. Neutral detergent fiber digestibility was least for control and intermediate for bran and steep with a tendency for solvent extracted germ meal to have the greatest fiber digestibility. Overall, steep and solvent extracted germ meal have similar energy densities as the steam-flaked corn control, and bran and solvent extracted germ meal are highly digestible fiber sources. The nutrient and physical characteristics of steep, solvent extracted germ meal, and bran are complementary and may contribute to the greater energy value of Sweet Bran compared to dry-rolled corn

    Effects of Supplementation with Royal Poinciana Seed Meal (Delonix regia) on Ruminal Fermentation Pattern, Microbial Protein Synthesis, Blood Metabolites and Mitigation of Methane Emissions in Native Thai Beef Cattle

    No full text
    The object of this present work was to determine the effects of supplementation with pellets containing royal poinciana seed meal (PEREM) on feed use, ruminal fermentation efficiency, microbial protein synthesis, blood metabolites and mitigation of methane (CH4) emissions in cattle. The animals used in this experiment were four male Thai native beef cattle (Bos indicus) with initial body weights (BWs) of 125 ± 5.0 kg. Each of the animals were randomly assigned to receive PEREM doses at 0, 50, 100 and 150 g/d, respectively, according to a 4 × 4 Latin square design. Concentrates were fed at 0.5% BW daily, and rice straw was fed ad libitum. There were no significant differences (p > 0.05) on intakes of rice straw, concentrate and total diet. The intake of nutrients did not change among the levels of PEREM supplementation (p > 0.05), except for an intake of crude protein, which was linearly enhanced when increasing the dose of PEREM (p < 0.05). The inclusion of different doses of PEREM did not adversely affect the digestibility of dry matter, organic matter, crude protein, neutral detergent fiber and acid detergent fiber (p > 0.05). Adding various doses of PEREM did not alter ruminal pH and ruminal temperature, while concentrations of ammonia-nitrogen were significantly increased with an increased dose of PEREM supplementation (p < 0.01). The increasing doses of PEREM linearly reduced protozoal numbers (p < 0.01), with the lowest concentration when PEREM was added at 150 g. PEREM supplementation did not change (p > 0.05) the concentration of acetic acid or butyric acid or the ratio of acetic acid to propionic acid. Nevertheless, the total volatile fatty acid and propionic acid content were changed among PEREM levels (p < 0.05), which were linearly increased with an increasing dose of PEREM. At 4 h post feeding, the CH4 concentrations in the rumen of the animal were linearly reduced when the dose of pellets was increased (p < 0.01). In addition, the inclusion of PEREM did not adversely affect other blood metabolites, namely total protein, creatinine and albumin (p > 0.05). Furthermore, microbial crude protein and efficiency of microbial N synthesis were linearly enhanced when increasing levels of PEREM were added. The feeding of PEREM at 150 g/d might be an alternative with the potential to improve rumen fermentation efficiency and reduce the environmental effects produced by ruminants

    Effect of cyanide-utilizing bacteria and sulfur on feed utilization, microbiomes, and cyanide degradation in cattle supplemented with fresh cassava root

    No full text
    Abstract This study aimed to compare the effects of adding cyanide-utilizing bacteria (CUB) and sulfur on rumen fermentation, the degradation efficiency of hydrogen cyanide (HCN), feed utilization, and blood metabolites in beef cattle fed two levels of fresh cassava root (CR). A 2 × 2 factorial arrangement in a 4 × 4 Latin square design was used to distribute four male purebred Thai native beef cattle (2.5–3.0 years old) with an initial body weight (BW) of 235 ± 15.0 kg. Factor A was Enterococcus faecium KKU-BF7 oral direct fed at 108 CFU/ml and 3% dry matter (DM) basis of pure sulfur in concentrate diet. Factor B was the two levels of CR containing HCN at 300 and 600 mg/kg on DM basis. There was no interaction effect between CUB and sulfur supplementation with CR on feed utilization (p > 0.05). Similarly, CUB and sulfur supplementation did not affect (p > 0.05) DM intake and apparent nutrient digestibility. However, the high level of CR supplementation increased (p  0.05). The addition of CUB or sulfur had no effect on the efficiency of HCN degradation in the rumen (p > 0.05). However, cattle given CR with HCN at 600 mg/kg DM had considerably higher degradation efficiency than those fed CR containing HCN at 300 mg/kg DM (p  0.05). However, the study observed a significant positive correlation between the amount of CR and the concentration of propionate in the rumen (p  0.05). Hence, it may be inferred that the administration of a high concentration of CR at a dosage of 600 mg/kg DM HCN could potentially provide advantageous outcomes when animals are subjected to oral CUB incorporation

    The recycling of tropical fruit peel waste-products applied in feed additive for ruminants: Food manufacturing industries, phytonutrient properties, mechanisms, and future applications

    No full text
    Tropical fruits are grown on tree varieties native to tropical regions, presenting a high concentration of phytonutrients (PTNs). Tropical fruits are often used in the extraction of juice, as well as in the preparation of jams, jellies, and canned products. The residual components, particularly fruit peels, are frequently discarded as wastes. This approach intends to reduce waste accumulation while meeting the growing public demand for PTNs, which are believed to possess antibacterial, antioxidant, methane production inhibitory, and rumen fermentation-enhancing properties. The tropical fruit wastes under consideration include banana, citrus fruit, dragon fruit, durian, jackfruit, mango, mangosteen, passion fruit, pineapple, pomegranate, and rambutan. Therefore, the objective of this review is to provide a comprehensive overview of the existing research focusing on the biological capabilities of tropical waste products derived from fruit peels, as well as their PTN profile, targeting their potential as supplements as feed additives for ruminants. The main attention of using PTNs found in tropical fruit peels is for enhancing rumen fermentation characteristics and production, while simultaneously mitigating the methane (CH4) production. Results provided by the present review showed that fruit peel waste products could buffer rumen pH levels, improve nutrient digestibility, ammonia-nitrogen (NH3–N) concentrations, blood urea nitrogen (BUN) levels, volatile fatty acids (VFAs) concentrations, and microbial populations, as well as enhancing milk production, and decrease CH4 production. These waste products could be a potential alternative plant-based PTN compound supplement to be use as a feed additive in ruminants

    Effect of Rhodanese Enzyme Addition on Rumen Fermentation, Cyanide Concentration, and Feed Utilization in Beef Cattle Receiving Various Levels of Fresh Cassava Root

    No full text
    Fresh cassava root is not recommended for animal feeding due to high quantities of hydrocyanic acid (HCN), which produces symptoms of poisoning. The purpose of this study was to find out how a rhodanese enzyme addition affects rumen fermentation, HCN content, feed utilization, and blood metabolites in beef calves fed fresh cassava root. Four Thai native beef cattle with an initial body weight (BW) of 95 ± 10.0 kg (1–1.5 years old) were randomly allocated to receive fresh cassava root containing HCN at 0, 300, 450, and 600 ppm according to a 4 × 4 Latin square design. Rice straw was the basal diet. The rhodanese enzyme was combined with concentrated feeds at a concentration of 1 mg/104 ppm HCN. The fresh cassava root was cleaned to remove dirt and chopped into 3 to 5 mm sized pieces before being fed to the animals at their various levels. The total feed intake of beef cattle increased when fed with fresh cassava root (p < 0.05). The digestibility of crude protein (CP) was different among various fresh cassava root levels (p < 0.05). Ruminal ammonia-N levels were measured 4 hours after feeding, and the average concentration declined considerably in animals fed fresh cassava root at 300–600 ppm HCN (p < 0.05). Cyanide concentration in the rumen was linearly increased by 270.6% (p < 0.05) when it was supplemented with a high level of fresh cassava root. Blood urea-N concentration was altered and decreased when supplemented with fresh cassava root (p < 0.01). The blood thiocyanate concentration was altered by the levels of fresh cassava root and rhodanese enzyme, which ranged from 4.1 to 27.9 mg/dL (p < 0.01). Cattle given fresh cassava root showed no influence on total volatile fatty acid, acetic acid, or butyric acid concentrations in the rumen (p > 0.05). However, the concentration of propionic acid increased slightly (p < 0.05) 4 hours after feeding. Supplementing fresh cassava root up to 600 ppm HCN/day improved N absorption, retention, and the proportion of N retention to N intake (p < 0.05). Therefore, increasing the inclusion of fresh cassava root with a rhodanese enzyme addition improves total feed intake, CP digestibility, nitrogen utilization, blood thiocyanate, and propionate concentrations, which may remove HCN without harming animal health

    Digestibility, Blood Parameters, Rumen Fermentation, Hematology, and Nitrogen Balance of Goats after Receiving Supplemental Coffee Cherry Pulp as a Source of Phytochemical Nutrients

    No full text
    This research examines the impact of adding dried coffee cherry pulp (CoCP) to goat feed on the digestibility of the feed, rumen fermentation, hematological, and nitrogen balance. A goat feeding experiment employed four male crossbreds (Thai Native × Anglo Nubian) aged 12 months and weighing 21.0 ± 0.2 kg each. The treatment was conceived as a 4 × 4 Latin square with four specific CoCP levels at 0, 100, 200, and 300 g/day. Dry matter intake (DMI), organic matter intake (OMI), and crude protein intake (CPI) were unaffected by the addition of CoCP. However, across treatment groups, there was a linear increase in ether extract intake (EEI) (p p = 0.06), and acid detergent fiber intake (ADFI) (p = 0.04), as well as a quadratic effect on DMI% BW (p = 0.04). The findings showed that rumen temperature, pH, ammonia-nitrogen, or pack cell volume did not change with CoCP supplementation. Total volatile fatty acid showed linear effects on acetate (p = 0.03) and was quadratically affected by propionate concentration (p = 0.02), acetate to propionate ratio (p = 0.01), acetic plus butyric to propionic acid ratio (p = 0.01), and methane estimation (p = 0.01). With increased CoCP supplementation, there was a linear decrease in protozoa count by about 20.2% as the amount of CoCP supplemented increased (p = 0.06). CoCP supplementation in animal feed resulted in a linear decrease in urinary nitrogen (p = 0.02) and a quadratic effect on absorbed nitrogen (p = 0.08) among treatment groups, with greater N utilization values found in goats fed 200 g/d CoCP. In light of this, supplementing CoCP into animal feed may improve animal digestion and rumen fermentation effectiveness while having no effect on feed intake, rumen microbes, or blood metabolites

    Recycling of Citric Acid Waste for Potential Use as Animal Feed through Fermentation with Lactic Acid Bacteria and a Mixture of Fibrolytic Enzymes

    No full text
    Once improperly managed, the citric acid production industry generates waste, which contributes to pollution and other environmental issues. We proposed that, with sufficient quality improvement, citric acid by-product (CAP) might be used for animal feed, thereby reducing the environmental impact. The aim of the present study was to ferment citric acid by-product (CAP) by inoculation with lactic acid bacteria (LAB) and a fibrolytic enzyme mixture for quality improvement and crude fiber reduction in the waste products. LAB inoculants were L. casei TH14, and the additive enzyme used was a fibrolytic enzyme mixture (glucanase, pectinase, and carboxymethylcellulase) of a small-scale fermentation method. The seven treatments employed in this study were as follows: (1) control (untreated), (2) CAP-inoculated L. casei TH14 at 0.01% DM, (3) CAP-inoculated L. casei TH14 at 0.05% DM, (4) CAP-inoculated enzymes at 0.01% DM, (5) CAP-inoculated enzymes at 0.05% DM, (6) CAP-inoculated L. casei TH14 at 0.01% DM with enzymes at 0.01% DM, and (7) CAP-inoculated L. casei TH14 at 0.05% DM with enzymes at 0.05% DM. The samples were taken on days 1, 7, 14, 21, and 28 of ensiling, both before and after. Four replications were used. The results of the chemical composition of the CAP before and after ensilage inoculated with L. casei TH14 did not show any differences in crude protein, ether extract, ash, or gross energy, but the enzymes significantly (p < 0.05) decreased crude fiber and increased nitrogen-free extract. The combination was especially effective at improving the characteristics of CAP, with a reduction in crude fiber from 21.98% to 22.69%, of neutral detergent fiber (NDF) from 16.01% to 17.54%, and of acid detergent fiber (ADF) from 13.75% to 16.19%. Furthermore, the combination of L. casei TH14 and the enzyme increased crude protein from 1.75% to 2.24% at 28 days of ensiling. Therefore, CAP-inoculated L. casei TH14 did not change in chemical composition, while crude fiber, NDF, and ADF decreased when CAP was inoculated with enzyme. The combination of L. casei TH14 and the enzyme is more effective at improving chemical composition and reducing crude fiber and enhancing carbohydrate breakdown in the CAP. Finally, by enhancing the CAP’s quality, it may be possible to use it in animal feed and minimize its impact on the environment
    corecore