38 research outputs found

    PIP2 PIP2 Hooray for Maxi K+

    Get PDF

    Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVbeta subunits

    Get PDF
    Arachidonic acid (AA) inhibits the activity of several different voltage-gated Ca(2+) channels by an unknown mechanism at an unknown site. The Ca(2+) channel pore-forming subunit (Ca(V)alpha(1)) is a candidate for the site of AA inhibition because T-type Ca(2+) channels, which do not require accessory subunits for expression, are inhibited by AA. Here, we report the unanticipated role of accessory Ca(V)beta subunits on the inhibition of Ca(V)1.3b L-type (L-) current by AA. Whole cell Ba(2+) currents were measured from recombinant channels expressed in human embryonic kidney 293 cells at a test potential of -10 mV from a holding potential of -90 mV. A one-minute exposure to 10 microM AA inhibited currents with beta(1b), beta(3), or beta(4) 58, 51, or 44%, respectively, but with beta(2a) only 31%. At a more depolarized holding potential of -60 mV, currents were inhibited to a lesser degree. These data are best explained by a simple model where AA stabilizes Ca(V)1.3b in a deep closed-channel conformation, resulting in current inhibition. Consistent with this hypothesis, inhibition by AA occurred in the absence of test pulses, indicating that channels do not need to open to become inhibited. AA had no effect on the voltage dependence of holding potential-dependent inactivation or on recovery from inactivation regardless of Ca(V)beta subunit. Unexpectedly, kinetic analysis revealed evidence for two populations of L-channels that exhibit willing and reluctant gating previously described for Ca(V)2 channels. AA preferentially inhibited reluctant gating channels, revealing the accelerated kinetics of willing channels. Additionally, we discovered that the palmitoyl groups of beta(2a) interfere with inhibition by AA. Our novel findings that the Ca(V)beta subunit alters kinetic changes and magnitude of inhibition by AA suggest that Ca(V)beta expression may regulate how AA modulates Ca(2+)-dependent processes that rely on L-channels, such as gene expression, enzyme activation, secretion, and membrane excitability

    Modulation of CaV1.3b L-type calcium channels by M1 muscarinic receptors varies with CaVbeta subunit expression

    Get PDF
    OBJECTIVES: We examined whether two G protein-coupled receptors (GPCRs), muscarinic M1 receptors (M1Rs) and dopaminergic D2 receptors (D2Rs), utilize endogenously released fatty acid to inhibit L-type Ca(2+) channels, CaV1.3. HEK-293 cells, stably transfected with M1Rs, were used to transiently transfect D2Rs and CaV1.3b with different CaVbeta-subunits, allowing for whole-cell current measurement from a pure channel population. RESULTS: M1R activation with Oxotremorine-M inhibited currents from CaV1.3b coexpressed with alpha2delta-1 and a beta1b, beta2a, beta3, or beta4-subunit. Surprisingly, the magnitude of inhibition was less with beta2a than with other CaVbeta-subunits. Normalizing currents revealed kinetic changes after modulation with beta1b, beta3, or beta4, but not beta2a-containing channels. We then examined if D2Rs modulate CaV1.3b when expressed with different CaVbeta-subunits. Stimulation with quinpirole produced little inhibition or kinetic changes for CaV1.3b coexpressed with beta2a or beta3. However, quinpirole inhibited N-type Ca(2+) currents in a concentration-dependent manner, indicating functional expression of D2Rs. N-current inhibition by quinpirole was voltage-dependent and independent of phospholipase A2 (PLA2), whereas a PLA2 antagonist abolished M1R-mediated N-current inhibition. These findings highlight the specific regulation of Ca(2+) channels by different GPCRs. Moreover, tissue-specific and/or cellular localization of CaV1.3b with different CaVbeta-subunits could fine tune the response of Ca(2+) influx following GPCR activation

    Characterization of ST14A Cells for Studying Modulation of Voltage-Gated Calcium Channels

    Get PDF
    In medium spiny neurons (MSNs) of the striatum, dopamine D2 receptors (D2Rs) specifically inhibit the Cav1.3 subtype of L-type Ca2+ channels (LTCs). MSNs are heterogeneous in their expression of dopamine receptors making the study of D2R pathways difficult in primary neurons. Here, we employed the ST14A cell line, derived from embryonic striatum and characterized to have properties of MSNs, to study Cav1.3 current and its modulation by neurotransmitters. Round, undifferentiated ST14A cells exhibited little to no endogenous Ca2+ current while differentiated ST14A cells expressed endogenous Ca2+ current. Transfection with LTC subunits produced functional Cav1.3 current from round cells, providing a homogeneous model system compared to native MSNs for studying D2R pathways. However, neither endogenous nor recombinant Cav1.3 current was modulated by the D2R agonist quinpirole. We confirmed D2R expression in ST14A cells and also detected D1Rs, D4Rs, D5Rs, Gq, calcineurin and phospholipase A2 using RT-PCR and/or Western blot analysis. Phospholipase C beta-1 (PLCbeta-1) expression was not detected by Western blot analysis which may account for the lack of LTC modulation by D2Rs. These findings raise caution about the assumption that the presence of G-protein coupled receptors in cell lines indicates the presence of complete signaling cascades. However, exogenous arachidonic acid inhibited recombinant Cav1.3 current indicating that channels expressed in ST14A cells are capable of modulation since they respond to a known signaling molecule downstream of D2Rs. Thus, ST14A cells provide a MSN-like cell line for studying channel modulation and signaling pathways that do not involve activation of PLCbeta-1

    Components of Reproductive Effort and Yield in Goldenrods

    Get PDF
    Four components of reproductive yield (the weight of reproductive tissue) were examined in relation to their effect on reproductive effort and their relative contributions to reproductive yield in five species of goldenrods (Solidago, Compositae). The yield components were number of flowing stems per plant, number of flowering branches per stem, number of flowering heads per branch, and number of seeds per seed head. Individuals within populations increase their reproductive effort by increasing their reproductive weight, not by decreasing their vegetative weight. Each species shows a different pattern of positive correlations of yield components with reproductive yield and reproductive effort, indicating that each species has its own mechanisms for regulating reproduction. The yield components were not significantly intercorrelated

    Orientation of palmitoylated CaVβ2a relative to CaV2.2 is critical for slow pathway modulation of N-type Ca2+ current by tachykinin receptor activation

    Get PDF
    The Gq-coupled tachykinin receptor (neurokinin-1 receptor [NK-1R]) modulates N-type Ca2+ channel (CaV2.2 or N channel) activity at two distinct sites by a pathway involving a lipid metabolite, most likely arachidonic acid (AA). In another study published in this issue (Heneghan et al. 2009. J. Gen Physiol. doi:10.1085/jgp.200910203), we found that the form of modulation observed depends on which CaVβ is coexpressed with CaV2.2. When palmitoylated CaVβ2a is coexpressed, activation of NK-1Rs by substance P (SP) enhances N current. In contrast, when CaVβ3 is coexpressed, SP inhibits N current. However, exogenously applied palmitic acid minimizes this inhibition. These findings suggested that the palmitoyl groups of CaVβ2a may occupy an inhibitory site on CaV2.2 or prevent AA from interacting with that site, thereby minimizing inhibition. If so, changing the orientation of CaVβ2a relative to CaV2.2 may displace the palmitoyl groups and prevent them from antagonizing AA's actions, thereby allowing inhibition even in the presence of CaVβ2a. In this study, we tested this hypothesis by deleting one (Bdel1) or two (Bdel2) amino acids proximal to the α interacting domain (AID) of CaV2.2's I–II linker. CaVβs bind tightly to the AID, whereas the rigid region proximal to the AID is thought to couple CaVβ's movements to CaV2.2 gating. Although Bdel1/β2a currents exhibited more variable enhancement by SP, Bdel2/β2a current enhancement was lost at all voltages. Instead, inhibition was observed that matched the profile of N-current inhibition from CaV2.2 coexpressed with CaVβ3. Moreover, adding back exogenous palmitic acid minimized inhibition of Bdel2/β2a currents, suggesting that when palmitoylated CaVβ2a is sufficiently displaced, endogenously released AA can bind to the inhibitory site. These findings support our previous hypothesis that CaVβ2a's palmitoyl groups directly interact with an inhibitory site on CaV2.2 to block N-current inhibition by SP

    The Ca2+ channel beta subunit determines whether stimulation of Gq-coupled receptors enhances or inhibits N current

    Get PDF
    In superior cervical ganglion (SCG) neurons, stimulation of M(1) receptors (M(1)Rs) produces a distinct pattern of modulation of N-type calcium (N-) channel activity, enhancing currents elicited with negative test potentials and inhibiting currents elicited with positive test potentials. Exogenously applied arachidonic acid (AA) reproduces this profile of modulation, suggesting AA functions as a downstream messenger of M(1)Rs. In addition, techniques that diminish AA\u27s concentration during M(1)R stimulation minimize N-current modulation. However, other studies suggest depletion of phosphatidylinositol-4,5-bisphosphate during M(1)R stimulation suffices to elicit modulation. In this study, we used an expression system to examine the physiological mechanisms regulating modulation. We found the beta subunit (Ca(V)beta) acts as a molecular switch regulating whether modulation results in enhancement or inhibition. In human embryonic kidney 293 cells, stimulation of M(1)Rs or neurokinin-1 receptors (NK-1Rs) inhibited activity of N channels formed by Ca(V)2.2 and coexpressed with Ca(V)beta1b, Ca(V)beta3, or Ca(V)beta4 but enhanced activity of N channels containing Ca(V)beta2a. Exogenously applied AA produced the same pattern of modulation. Coexpression of Ca(V)beta2a, Ca(V)beta3, and Ca(V)beta4 recapitulated the modulatory response previously seen in SCG neurons, implying heterogeneous association of Ca(V)beta with Ca(V)2.2. Further experiments with mutated, chimeric Ca(V)beta subunits and free palmitic acid revealed that palmitoylation of Ca(V)beta2a is essential for loss of inhibition. The data presented here fit a model in which Ca(V)beta2a blocks inhibition, thus unmasking enhancement. Our discovery that the presence or absence of palmitoylated Ca(V)beta2a toggles M(1)R- or NK-1R-mediated modulation of N current between enhancement and inhibition identifies a novel role for palmitoylation. Moreover, these findings predict that at synapses, modulation of N-channel activity by M(1)Rs or NK-1Rs will fluctuate between enhancement and inhibition based on the presence of palmitoylated Ca(V)beta2a
    corecore