9 research outputs found

    Mechanism of generation of body surface electrocardiographic P-waves in normal, middle, and lower sinus rhythms.

    No full text
    We used comprehensive electrophysiological/anatomical digital computer models of atrial excitation and the human torso to study the mechanisms of generation of body surface P-waves in normal sinus rhythm, and in middle and lower sinus rhythm. Simulated atrial surface isochrone maps for normal sinus rhythm support the validity of the atrial excitation model. The results suggest that the presence of specialized internodal tracts containing fast-conducting fibers is not essential to account for propagation of excitation in apparent preferential directions from the sinoatrial (SA) node to the atrioventricular node. However, in the absence of fast conducting fibers, a slowly conducting segment in the intercaval region is necessary to achieve proper excitation of the interatrial septum. P-wave notches occur in the absence of specialized fast conducting atrial tracts and anisotropies due to fiber orientation. These notches are due to the atrial geometry and the separate contributions of the right atrium, left atrium, and interatrial septum to the P-waves, and become more pronounced as the pacemaker site shifts downward in the SA node. Thus, slight changes in the origin of excitation, which result in subtle changes in the atrial excitation isochrones, produce significant and complex changes in the simulated body surface P-waves.</jats:p

    IK1 modulates the U-wave: insights in a 100-year-old enigma.

    No full text
    n 1906, 11 years after Einthoven's first description of the P-QRS-T complex in a human electrocardiogram in 1895,1 he reported the existence of a wave after the T-wave, accordingly named U-wave, in a patient with “degenerative myocardial disease.” In the following years, Einthoven and Lewis noted the existence of a U-wave in the majority of their tracings. Recently, the unresolved problem of the U-wave genesis attracted renewed attention. These contradictory results prompted us to further investigate this phenomenon

    Circadian pattern of short-term variability of the QT-interval in primary prevention ICD patients - EU-CERT-ICD methodological pilot study.

    Get PDF
    OBJECTIVE: Short-term variability of the QT-interval (STV-QT) was shown to be associated with an increased risk of ventricular arrhythmias. We aimed at investigating (a) whether STV-QT exhibits circadian pattern, and (b) whether such pattern differs between patients with high and low arrhythmia risk. METHODS: As part of the ongoing EU-CERT-ICD study, 24h high resolution digital ambulatory 12-lead Holter recordings are collected prior to ICD implantation for primary prophylactic indication. Presently available patients were categorized based on their arrhythmia score (AS), a custom-made weighted score of the number of arrhythmic events on the recording. STV-QT was calculated every hour in 30 patients of which 15 and 15 patients had a high and a low AS, respectively. RESULTS: The overall dynamicity of STV-QT showed high intra- and inter-individual variability with different circadian patterns associated with low and high AS. High AS patients showed a prominent peak both at 08:00 and 18:00. At these times, STV-QT was significantly higher in the high AS patients compared to the low AS patients (1.22ms±0.55ms vs 0.60ms±0.24ms at 08:00 and 1.12ms±0.39ms vs 0.64ms±0.29ms at 18:00, both p < 0.01). CONCLUSION: In patients with high AS, STV-QT peaks in the early morning and late afternoon. This potentially reflects increased arrhythmia risk at these times. Prospective STV-QT determination at these times might thus be more sensitive to identify patients at high risk of ventricular arrhythmias.peerReviewe

    De Staatkundige Opbouw

    No full text
    corecore