9 research outputs found

    Universality of rain event size distributions

    Full text link
    We compare rain event size distributions derived from measurements in climatically different regions, which we find to be well approximated by power laws of similar exponents over broad ranges. Differences can be seen in the large-scale cutoffs of the distributions. Event duration distributions suggest that the scale-free aspects are related to the absence of characteristic scales in the meteorological mesoscale.Comment: 16 pages, 10 figure

    Influence of biogenic emissions from boreal forests on aerosol-cloud interactions

    Get PDF
    Boreal forest acts as a carbon sink and contributes to the formation of secondary organic aerosols via emission of aerosol precursor compounds. However, these influences on the climate system are poorly quantified. Here we show direct observational evidence that aerosol emissions from the boreal forest biosphere influence warm cloud microphysics and cloud-aerosol interactions in a scale-dependent and highly dynamic manner. Analyses of in situ and ground-based remote-sensing observations from the SMEAR II station in Finland, conducted over eight months in 2014, reveal substantial increases in aerosol load over the forest one to three days after aerosol-poor marine air enters the forest environment. We find that these changes are consistent with secondary organic aerosol formation and, together with water-vapour emissions from evapotranspiration, are associated with changes in the radiative properties of warm, low-level clouds. The feedbacks between boreal forest emissions and aerosol-cloud interactions and the highly dynamic nature of these interactions in air transported over the forest over timescales of several days suggest boreal forests have the potential to mitigate climate change on a continental scale. Our findings suggest that even small changes in aerosol precursor emissions, whether due to changing climatic or anthropogenic factors, may substantially modify the radiative properties of clouds in moderately polluted environments. Emissions from the boreal forest biosphere can substantially increase aerosol load above the forest and influence the radiative properties of clouds, according to analysis of observations from a monitoring station in Finland.Peer reviewe

    Balloon-Borne Sounding System (SONDE) Handbook

    No full text
    The balloon-borne sounding system (SONDE) provides in situ measurements (vertical profiles) of both the thermodynamic state of the atmosphere and the wind speed and direction

    Blowing Snow at McMurdo Station, Antarctica During the AWARE Field Campaign: Surface and Ceilometer Observations

    No full text
    Blowing snow (BLSN) is an impactful process in cold climates, affecting regional thermodynamics, radiation properties, and the surface mass balance of snow. Though it has significant climatic impacts, the process is still poorly understood and not widely included in weather and climate models. In 2016, the AWARE Field Campaign saw the deployment of a large suite of in situ and remote sensing instruments to McMurdo Station, Antarctica allowing for investigation of BLSN. A ceilometer-based BLSN detection algorithm used elsewhere in Antarctica is applied to data from AWARE, yielding a BLSN frequency of 14.1% compared to 8.2% as detected by human observers. To increase confidence in detections, the algorithm is updated to have shorter temporal averaging and to include a variety of meteorological thresholds to limit false detections due to fog. Efforts to incorporate a laser disdrometer into the algorithm were unsuccessful. An unphysical dependence of particle size distributions on wind speed is found suggesting observations are problematic at wind speeds greater than 10 m s−1. The revised algorithm detected a BLSN frequency of 7.4%, increasing agreement with human observations and confidence that the process is actively occurring at the observation site. These observations are put into context of a climatology of human observations of BLSN at McMurdo station from 2002–2018. An annual average of 8.0%–14.0% is estimated, with a total annual range of 3.4%–21.3%. Regardless of whether BLSN is observed by humans or instrument, the majority of cases at this location are associated with ongoing precipitation
    corecore