3,319 research outputs found

    Wind-Blown Mosquitoes and Introduction of Japanese Encephalitis into Australia

    Get PDF

    Symmetry Protected Topological phases and Generalized Cohomology

    Get PDF
    We discuss the classification of SPT phases in condensed matter systems. We review Kitaev's argument that SPT phases are classified by a generalized cohomology theory, valued in the spectrum of gapped physical systems. We propose a concrete description of that spectrum and of the corresponding cohomology theory. We compare our proposal to pre-existing constructions in the literature.Comment: 27 pages, 10 figures. v2: citation updat

    The state of the art of lethal oviposition trap-based mass tnterventions for arboviral control

    Get PDF
    The intensifying expansion of arboviruses highlights the need for effective invasive Aedes control. While mass-trapping interventions have long been discredited as inefficient compared to insecticide applications, increasing levels of insecticide resistance, and the development of simple affordable traps that target and kill gravid female mosquitoes, show great promise. We summarize the methodologies and outcomes of recent lethal oviposition trap-based mass interventions for suppression of urban Aedes and their associated diseases. The evidence supports the recommendation of mass deployments of oviposition traps to suppress populations of invasive Aedes, although better measures of the effects on disease control are needed. Strategies associated with successful mass-trap deployments include: (1) high coverage (>80%) of the residential areas; (2) pre-intervention and/or parallel source reduction campaigns; (3) direct involvement of community members for economic long-term sustainability; and (4) use of new-generation larger traps (Autocidal Gravid Ovitrap, AGO; Gravid Aedes Trap, GAT) to outcompete remaining water-holding containers. While to the best of our knowledge all published studies so far have been on Ae. aegypti in resource-poor or tropical settings, we propose that mass deployment of lethal oviposition traps can be used for focused cost-effective control of temperate Ae. albopictus pre-empting arboviral epidemics and increasing participation of residents in urban mosquito control

    Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics

    Get PDF
    Background: Anthropogenic land use changes have contributed considerably to the rise of emerging and re-emerging mosquito-borne diseases. These diseases appear to be increasing as a result of the novel juxtapositions of habitats and species that can result in new interchanges of vectors, diseases and hosts. We studied whether the mosquito community structure varied between habitats and seasons and whether known disease vectors displayed habitat preferences in tropical Australia. Methods: Using CDC model 512 traps, adult mosquitoes were sampled across an anthropogenic disturbance gradient of grassland, rainforest edge and rainforest interior habitats, in both the wet and dry seasons. Nonmetric multidimensional scaling (NMS) ordinations were applied to examine major gradients in the composition of mosquito and vector communities. Results: We captured ~13,000 mosquitoes from 288 trap nights across four study sites. A community analysis identified 29 species from 7 genera. Even though mosquito abundance and richness were similar between the three habitats, the community composition varied significantly in response to habitat type. The mosquito community in rainforest interiors was distinctly different to the community in grasslands, whereas forest edges acted as an ecotone with shared communities from both forest interiors and grasslands. We found two community patterns that will influence disease risk at out study sites, first, that disease vectoring mosquito species occurred all year round. Secondly, that anthropogenic grasslands adjacent to rainforests may increase the probability of novel disease transmission through changes to the vector community on rainforest edges, as most disease transmitting species predominantly occurred in grasslands. Conclusion: Our results indicate that the strong influence of anthropogenic land use change on mosquito communities could have potential implications for pathogen transmission to humans and wildlife

    Assessment of synthetic floral-based attractants and sugar baits to capture male and female Aedes aegypti (Diptera: Culicidae)

    Get PDF
    Background: The viruses transmitted by Aedes aegypti, including dengue and Zika viruses, are rapidly expanding in geographic range and as a threat to public health. In response, control programs are increasingly turning to the use of sterile insect techniques resulting in a need to trap male Ae. aegypti to monitor the efficacy of the intervention. However, there is a lack of effective and cheap methods for trapping males. Thus, we attempted to exploit the physiological need to obtain energy from sugar feeding in order to passively capture male and female Ae. aegypti (nulliparous and gravid) in free-flight attraction assays. Candidate lures included previously identified floral-based (phenylacetaldehyde, linalool oxide, phenylethyl alcohol, and acetophenone) attractants and an attractive toxic sugar bait-based (ATSB) solution of guava and mango nectars. A free-flight attraction assay assessed the number of mosquitoes attracted to each candidate lure displayed individually. Then, a choice test was performed between the best-performing lure and a water control displayed in Gravid Aedes Traps (GAT). Results: Results from the attraction assays indicated that the ATSB solution of guava and mango nectars was the most promising lure candidate for males; unlike the floral-based attractants tested, it performed significantly better than the water control. Nulliparous and gravid females demonstrated no preference among the lures and water controls indicating a lack of attraction to floral-based attractants and sugar baits in a larger setting. Although the guava-mango ATSB lure was moderately attractive to males when presented directly (i.e. no need to enter a trap or other confinement), it failed to attract significantly more male, nulliparous female, or gravid female Ae. aegypti than water controls when presented inside a Gravid Aedes Trap. Conclusions: Our findings suggest that the use of volatile floral-based attractants and sugar mixtures that have been identified in the literature is not an effective lure by which to kill Ae. aegypti at ATSB stations nor capture them in the GAT. Future trapping efforts would likely be more successful if focused on more promising methods for capturing male and female Ae. aegypti

    Residual treatment of Aedes aegypti (Diptera: Culicidae) in containers using Pyriproxyfen slow-release granules (Sumilarv 0.5G)

    Get PDF
    The residual efficacy of pyriproxyfen against Aedes aegypti (L.) was examined by treating 2-liter buckets with a range of rates of Sumilarv 0.5G (100, 10, 1, and 0.1 mg product/liter or nominal dose of 500, 50, 5, and 0.5 ppb active ingredient) under semifield conditions. Approximately every 2 wk, pupal emergence inhibition (EI) was measured by using Cairns colony Ae. aegypti. Pooled water samples from the five replicate buckets were analyzed for active pyriproxyfen by using ultra-high-pressure liquid chromatography with tandem mass spectrometry detection. A strong dose‐response in EI was exhibited, with the 0.1 mg/liter giving ≈50% EI for only the initial week, whereas the 10 and 100 mg/liter doses produced EI > 90% for 8 and 40 wk, respectively. Measurable levels of active ingredient were detected in the 100, 10, and 1 mg/liter treatments, with measured starting concentrations of just 1‐2‐1.4% of the delivered (active ingredient) dose. Pyriproxyfen was detected in the 100 mg/liter treatment through the entire course of the trial (60 wk)

    Wind-blown mosquitoes and introduction of Japanese encephalitis into Australia.

    Get PDF
    Backtrack simulation analysis indicates that wind-blown mosquitoes could have traveled from New Guinea to Australia, potentially introducing Japanese encephalitis virus. Large incursions of the virus in 1995 and 1998 were linked with low-pressure systems that sustained strong northerly winds from New Guinea to the Cape York Peninsula

    Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks

    No full text
    BACKGROUND: Dengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually. To investigate impacts of future climate change on dengue virus transmission, we investigated bionomics of the mosquito vector, Aedes aegypti. METHODS: Using a dynamic life table simulation model (the Container inhabiting mosquito simulation CIMSiM) and statistically downscaled daily values for future climate, we assessed climate change induced changes to mosquito bionomics. Simulations of Ae. aegypti populations for current (1991-2011) and future climate (2046-2065) were conducted for the city of Cairns, Queensland, the population centre with most dengue virus transmission in Australia. Female mosquito abundance, wet weight, and the extrinsic incubation period for dengue virus in these mosquitoes were estimated for current and future climate (MPI ECHAM 5 model, B1 and A2 emission scenarios). RESULTS: Overall mosquito abundance is predicted to change, but results were equivocal for different climate change scenarios. Aedes aegypti abundance is predicted to increase under the B1, but decrease under the A2 scenario. Mosquitoes are predicted to have a smaller body mass in a future climate. Shorter extrinsic incubation periods are projected. CONCLUSIONS: It is therefore unclear whether dengue risk would increase or decrease in tropical Australia with climate change. Our findings challenge the prevailing view that a future, warmer climate will lead to larger mosquito populations and a definite increase in dengue transmission. Whilst general predictions can be made about future mosquito borne disease incidence, cautious interpretation is necessary due to interaction between local environment, human behaviour and built environment, dengue virus, and vectors.This project was funded by the Commonwealth Department for Climate Change, via the NH&MRC (project 1003371)
    corecore