9 research outputs found

    A simple, narrow, and robust atomic frequency reference at 993 nm exploiting the rubidium (Rb) 5S1/25\mathit{S}_{1/2} to 6S1/26\mathit{S}_{1/2} transition using one-color two-photon excitation

    Full text link
    We experimentally demonstrate a one-color two-photon transition from the 5S1/25\mathit{S}_{1/2} ground state to the 6S1/26\mathit{S}_{1/2} excited state in rubidium (Rb) vapor using a continuous wave laser at 993 nm. The Rb vapor contains both isotopes (85^{85}Rb and 87^{87}Rb) in their natural abundances. The electric dipole allowed transitions are characterized by varying the power and polarization of the excitation laser. Since the optical setup is relatively simple, and the energies of the allowed levels are impervious to stray magnetic fields, this is an attractive choice for a frequency reference at 993 nm, with possible applications in precision measurements and quantum information processing.Comment: 8 pages, 4 figures, research articl

    A dynamic magneto-optical trap for atom chips

    Get PDF
    We describe a dynamic magneto-optical trap (MOT) suitable for the use with vacuum systems in which optical access is limited to a single window. This technique facilitates the long-standing desire of producing integrated atom chips, many of which are likely to have severely restricted optical access compared with conventional vacuum chambers. This "switching-MOT" relies on the synchronized pulsing of optical and magnetic fields at audio frequencies. The trap's beam geometry is obtained using a planar mirror surface, and does not require a patterned substrate or bulky optics inside the vacuum chamber. Central to the design is a novel magnetic field geometry that requires no external quadrupole or bias coils which leads toward a very compact system. We have implemented the trap for 85Rb and shown that it is capable of capturing 2 million atoms and directly cooling below the Doppler temperature

    A misaligned magneto-optical trap to enable miniaturized atom chip systems

    Get PDF
    We describe the application of displaced, or misaligned, beams in a mirror-based magneto-optical trap (MOT) to enable portable and miniaturized atom chip experiments where optical access is limited to a single window. Two different geometries of beam displacement are investigated: a variation on the well-known 'vortex-MOT', and the other a novel 'hybrid-MOT' combining Zeeman-shifted and purely optical scattering force components. The beam geometry is obtained similar to the mirror-MOT, using a planar mirror surface but with a different magnetic field geometry more suited to planar systems. Using these techniques, we have trapped around 6 × 106 and 26 × 106 atoms of 85Rb in the vortex-MOT and hybrid-MOT respectively. For the vortex-MOT the atoms are directly cooled well below the Doppler temperature without any additional sub-Doppler cooling stage, whereas the temperature of the hybrid-MOT has been measured slightly above the Doppler temperature limit. In both cases the attained lower temperature ensures the quantum behaviour of the trapped atoms required for the applications of portable quantum sensors and many others.</p

    Carrier frequency modulation of an acousto-optic modulator for laser stabilization

    No full text
    The stabilization of lasers to absolute frequency references is a fundamental requirement in several areas of atomic, molecular and optical physics. A range of techniques are available to produce a suitable reference onto which one can ‘lock’ the laser, many of which depend on the specific internal structure of the reference or are sensitive to laser intensity noise. We present a novel method using the frequency modulation of an acousto-optic modulator’s carrier (drive) signal to generate two spatially separated beams, with a frequency difference of only a few MHz. These beams are used to probe a narrow absorption feature and the difference in their detected signals leads to a dispersion-like feature suitable for wavelength stabilization of a diode laser. This simple and versatile method only requires a narrow absorption line and is therefore suitable for both atomic and cavity based stabilization schemes. To demonstrate the suitability of this method we lock an external cavity diode laser near the 85Rb 5S1/2 → 5P3/2, F = 3 → F′ = 4 using sub-Doppler pump probe spectroscopy and also demonstrate excellent agreement between the measured signal and a theoretical model
    corecore