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We quantify the effects of growth temperature on material and device properties of thermally evaporated 

SnS thin-films and test structures. Grain size, Hall mobility, and majority-carrier concentration 

monotonically increase with growth temperature. However, the charge collection as measured by the 

long-wavelength contribution to short-circuit current exhibits a non-monotonic behavior: the collection 

decreases with increased growth temperature from 150°C to 240°C and then recovers at 285°C. Fits to 

the experimental internal quantum efficiency using an opto-electronic model indicate that the non-

monotonic behavior of charge-carrier collection can be explained by a transition from drift- to diffusion-

assisted components of carrier collection. The results show a promising increase in the extracted 

minority-carrier diffusion length at the highest growth temperature of 285°C. These findings illustrate 

how coupled mechanisms can affect early-stage device development, highlighting the critical role of 

direct materials property measurements and simulation. 
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Tin (II) sulfide (SnS) is a promising Earth-abundant thin-film solar absorber material because of its high 

absorption coefficient in the visible wavelengths,1–5 tunable hole carrier density in the range 1015 to 1018 

cm-3,1,6 and potential for high-throughput manufacturing.5 In recent years, the conversion efficiency of 

SnS-based solar cells has considerably improved from 1.3% to 4.36%.1,7–11 However, the record 

efficiency still pales in comparison to the theoretical maximum efficiencya of SnS, 32%.12 As a step 

towards understanding the loss mechanisms at play, the present work focuses on the measurement and 

modeling of carrier collection and photocurrent in SnS devices. The methodology used here to connect 

material properties to device performance generalizes to other thin-film absorber materials in early-stage 

device development.  

We recently reported on thermally evaporated SnS-based solar cells with a short-circuit current ( ) of 

20.6 mA/cm2.5 This is among the highest  in the literature for SnS-based solar cells,10,11 yet is still 

less than half of the theoretical maximum of 43.3 mA/cm2.5 An analysis of the external quantum 

efficiency revealed the leading loss mechanism: 19% of all incident photons are lost to recombination, 

mostly at long wavelengths (>700 nm).5 Improving charge-carrier collection in the SnS layer is a critical 

step toward improving the short-circuit current to levels that justify industrial scale-up. 

For other thermally evaporated thin-film solar cell materials such as cadmium telluride and copper 

(indium, gallium) (diselenide, disulfide), the growth temperature  is a critical process parameter 

affecting charge-carrier collection in devices.13,14 Although the effect of  on crystalline texture, grain 

size, electrical transport properties, and optical properties of SnS thin films has been studied 

extensively,15–19 its effect on charge-carrier collection has not yet been directly measured through a 

working SnS photovoltaic device. 

                                                 
a Assumes a bandgap of 1.1 eV. 
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In this work, we determine the effect of growth temperature  on the structural and electrical properties 

of thermally evaporated SnS films. We then measure the internal quantum efficiency (IQE) of devices 

using a previously developed device stack.5 IQE probes the collection efficiency due to drift and 

diffusion, allowing us to analyze the transport properties of SnS under different processing conditions. 

By increasing the SnS growth temperature from 150 to 285°C, we traverse through a local minimum in 

long-wavelength carrier collection, a behavior we attribute to the combined effects of a varying SnS 

majority-carrier concentration and minority-carrier diffusion length. A monotonic increase in carrier 

concentration with increasing growth temperature leads to decreasing drift-assisted carrier collection. 

This causes a decrease in total collection up to the highest growth temperature of 285°C. Despite the 

decrease in drift-assisted collection at 285°C, we see a recovery in total long-wavelength carrier 

collection due to an improvement in minority-carrier diffusion length. This suggests that the films grown 

at the highest temperature have a lower density of lifetime-limiting bulk defects. 

The SnS thin films are grown via thermal evaporation on Si/SiO2/Mo substrates at four substrate 

temperatures: 150, 200, 240, and 285°C. The deposition rate is held at 1–2 Å/s. Substrate temperatures 

higher than 285°C result in re-evaporation of SnS from the substrate due to the low deposition rate and 

large source-to-substrate distance (10 cm) in our thermal evaporation system. All films are subsequently 

annealed at 400°C in 4% H2S atmosphere (N2 balance) at 28 Torr for 60 minutes to promote grain 

growth. Re-evaporation is strongly suppressed during annealing,20 presumably because the high total 

pressure limits re-evaporation. The post-annealed film thicknesses range from 886-1204 nm due to 

differences in surface topology and error in deposition rate measurement. Devices are fabricated with 

each annealed film using a previously reported procedure.21 The device stack includes a thin SnO2 layer 

on the SnS surface and a Zn(O,S):N n-type buffer layer. Each sample contains 11 devices defined by a 

shadow-masked ITO pattern. Further details on the preparation of SnS powder, preparation of 
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Si/SiO2/Mo substrates, thermal evaporation and annealing parameters, and device fabrication steps are 

described in prior work.21 

We first study the impact of  on the structural and electronic properties of SnS thin-films, summarized 

in Figure 1. The morphology of the SnS films are characterized by field-emission scanning electron 

microscopy (Zeiss, Ultra-55), and grain areas are extracted by analyzing manual traces20 using the image 

processing software ImageJ.22 The micrographs (Figure 1a) indicate a variation in packing density of 

grains. As  increases, intergranular voids decrease in size and frequency. Figure 1b shows a box plot 

representing the distribution of in-plane grain diameters (assuming circular grains) for each growth 

temperature. The median grain diameter increases monotonically with , ranging from 191 nm at 

 to 383 nm at . The grain diameter distribution profile also changes as a function of . 

As  increases, the midspread of grain diameters increases, accompanied by an increasingly positive 

skew in the distribution. For example, the upper quartile grain size for  is 269 nm, as 

compared to 616 nm for . All of these morphological trends are observed despite an identical 

1-hr post-deposition anneal at 400°C for all samples. This suggests that the as-grown film morphology 

may kinetically limit the grain-growth during the subsequent anneal step. 

Figure 1c and 1d show the results of Hall effect measurements carried out on SnS sister samples grown 

on Si/SiO2 wafers. All films were p-type, and the hole concentration increased monotonically with  

from 6.3×1015 to 3.1×1016 cm-3. The hole concentration is likely controlled by the concentration of 

doubly-ionized Sn vacancies, which are predicted to be shallow acceptors.23 The film resistivity 

decreased from 49 to 6.3 Ω-cm. Hole mobility tended to increase with , ranging from 20.1 to 31.6 

. The upward trend in grain size and mobility with  is consistent with decreasing grain 

boundary scattering,24 but other intragranular scattering processes may also limit mobility. Notably, the 

dependence of electrical properties on  persist despite a post-deposition anneal at 400°C. 
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External quantum efficiency measurements are performed (PV Measurements Model QEX7) at room 

temperature without light or voltage bias. Internal quantum efficiency is calculated by , where 

 is the reflectivity of the device stack as measured by a spectrophotometer (Perkins Elmer Lambda 

950).  Figure 2 shows the average IQE from all rectifying devices on each substrate. Below 450 nm, the 

IQE drops sharply due to optical absorption in the Zn(O,S):N and ITO layers.5 In the wavelength range 

450-700 nm, the IQE varies across growth temperatures. Although this short-wavelength region is 

sensitive to carrier collection within 100 nm from the SnS/Zn(O,S):N interface (as  cm-1 for 

these wavelengths), this region is also particularly sensitive to errors in the reflectivity measurement due 

to pronounced optical interference in the ITO and Zn(O,S):N layers. In contrast, the long-wavelength 

region 700-950 nm is more sensitive to changes in carrier collection throughout the bulk, because for 

these wavelengths the absorption coefficient  is as low as 104 cm-1 and film thicknesses are  cm. 

Moreover, interference fringes in the reflectivity spectrum due to the ITO and Zn(O,S):N layers are less 

pronounced for wavelengths beyond 700 nm. Thus, we restrict our analysis of carrier collection to the 

long-wavelength region 700-950 nm. In this region, we observe an unexpected trend: the magnitude of 

IQE varies non-monotonically with . Figure 3a shows the integrated IQE in the long-wavelength range 

in terms of the current density 

  (1) 

where  is the AM1.5 spectral irradiance. As growth temperature increases,  decreases 

from 8.4 mA/cm2 at , to 6.3 mA/cm2 at , and then increases back to 8.4 mA/cm2 

at the highest growth temperature of 285°C (Figure 3a). 

We hypothesize that this non-monotonic behavior in long-wavelength IQE with temperature is due to 

the combined effects of a varying majority-carrier (hole) concentration  and minority-carrier diffusion 

length . The depletion width decreases with increasing , reducing the distance over which the 
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internal electric field assists collection of minority electrons from the SnS bulk. That is, a lower hole 

concentration should result in a larger photo-generated carrier collection because there is a higher 

minority-carrier drift current. Figure 3b shows the depletion widths computed using measured hole 

carrier concentrations and an analytic expression for heterojunctions.20,25 The SnS film grown at the 

lowest temperature of 150°C has the lowest  (Figure 1d), the largest depletion width, and thus the most 

drift-assisted collection. As carrier concentration increases with , we expect a decrease in drift-assisted 

collection due to a shrinking depletion width. This trend in expected drift-assisted collection is 

consistent with the trend in  for  240°C. However, for the highest growth temperature of 

285°C, we observe a recovery of  despite the relatively small depletion width. One possible 

mechanism for the relatively high  at 285°C is by an enhancement of .  

We verify this hypothesis by implementing a one-dimensional opto-electronic model in SCAPS-1D26 

and fitting to the experimental long-wavelength IQE.20 With the model, we demonstrate that the 

decreasing trend in  for growth temperatures up to 240°C is caused by an increasing hole 

concentration, while the resurgence in  at 285°C is driven by an increase in . As inputs to the 

simulation, we use material parameters extracted from experimental data on the here-studied samples in 

conjunction with literature values.20 Within the defined parameter space, the minority-carrier mobility 

 and minority-carrier lifetime  affect  equivalently. We aim to fit the simulated long-

wavelength (700–950 nm) IQE to experimental data by using the  product as the effective fitting 

parameter, and then extract the fitted diffusion length .20  

The fitted diffusion lengths are shown by the filled squares in Figure 3c. The error bars in Figure 3c take 

into account both uncertainty in material parameters from the literature, as well as the effect of varying 

-dependent parameters other than hole concentration.20 For the lowest growth temperature of 150°C, 

the fitted diffusion length ranges from 88–135 nm. Remarkably, the  ranges for  and 



7 
 

240°C statistically overlap with the range for , implying that the change in hole 

concentration alone is sufficient to explain the change in  for growth temperatures up to 240°C. 

However, the fitted diffusion lengths for 285°C range from 172–228 nm, well above the ranges for 

lower growth temperatures. Thus, even accounting for variation of other parameters, the recovery in  

 at  285°C cannot be explained without an increase in  of the films deposited at this 

temperature. We note that the hole concentration measurements are performed on different substrates 

from those used for device measurements. Although this could result in quantitative differences in  and 

the fitted , the trends in  and  as a function of  are likely unaffected.20 As a check, we also 

consider the effects of a varying surface roughness and absorption coefficient on , and find that 

they are insufficient to account for the variation in measured .20 

Because the Hall mobility increases by only 2.9% from  240°C to 285°C, the rise in  at 285°C 

is likely driven by an enhancement of effective minority-carrier lifetime. Recalling that the grain size is 

highest for 285°C, a reduction in grain boundary recombination may contribute to the increase in 

.27 However, grain size tends to increase monotonically with temperature, whereas the fitted  

stays nearly constant for . Thus, grain boundary recombination alone does not explain the 

trend in fitted  . Instead, we suspect that a reduction of intragranular defect density is responsible for 

the enhancement of minority-carrier lifetime at .  

In optimizing SnS bulk properties for maximum carrier collection, we would ideally benefit from both 

drift and diffusion. Figure 4 is a contour plot of simulated  for a range of SnS hole concentrations 

and diffusion lengths, with the results of the present study appropriately overlayed in the parameter 

space.20 Here it is more easily seen how as  increases, we traverse through the parameter space in a 

way that produces lower  at the intermediate temperatures. Additionally, we should aim for both 

lower carrier concentrations (towards 1015 cm-3) and higher diffusion lengths to achieve long-
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wavelength current densities approaching the theoretical maximum of  15.0 mA/cm2. It is also 

important to note a qualitative difference in the effect of hole concentration versus that of diffusion 

length on . Increasing  increases both diffusive and drift collection and is especially effective 

at improving carrier collection. In contrast, decreasing  can only increase collection by enlarging the 

depletion region and has a more limited improvement capacity. As the carrier concentration is 

decreased, the loss in current due to the series resistance of SnS counteracts the benefit of drift-assisted 

collection. Consequently, for a given diffusion length, the net benefit of decreasing  diminishes as  is 

lowered. We note that while the IQE measurements focus exclusively on the short-circuit point, the SnS 

hole concentration also affects the open-circuit voltage and fill factor. The SnS hole concentration 

should thus be optimized not only for short-circuit carrier collection, but for overall device efficiency. 

Work is ongoing in co-optimizing growth and annealing conditions to allow tunable carrier 

concentration while maximizing diffusion lengths. 

In summary, we have shown that by increasing growth temperature from 150 to 285°C, we traverse 

through a local minimum in current density at long wavelengths due to the combined effects of a 

varying carrier concentration and diffusion length. The hole concentration monotonically increases with 

increasing growth temperature, which leads to decreasing drift-assisted carrier collection. At the highest 

growth temperature, we observe a recovery of the carrier collection due to an increase in diffusive 

minority-carrier transport. Higher carrier collection may be achievable by simultaneously decreasing 

carrier concentration and increasing diffusion length. The fact that the trends in grain morphology, 

carrier concentration, and extracted diffusion length are observed after a post-growth annealing step of 

400°C in H2S ambient highlights the importance of defect engineering during thin-film growth to 

achieve optimum bulk material properties. The increase in diffusive carrier transport at 285°C is 

promising, as it suggests we may achieve even higher diffusion lengths and enhanced device 

performance with growth temperatures beyond 285°C. Higher substrate temperatures can be attained by 
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increasing the source temperature and decreasing the source-substrate distance to increase the SnS 

adatom flux. Ideally, a close-space sublimation geometry would be employed, allowing far higher 

growth temperatures. These steps to increase growth temperature may be critical to achieve high-quality 

SnS thin films which ultimately improve the efficiency of SnS-based photovoltaic devices.  
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Figures 

 

Figure 1. Experimental data on structural and electrical properties. (a) Plan-view SEM, showing 

increasing grain size with growth temperature (increasing temperature left to right: 150°C in blue, 200°C 

in green, 240°C in purple, 285°C in red). Scale bar indicates 1 μm. (b) Distribution of post-annealed 

grain diameters tending towards larger grains with increasing growth temperature. Black horizontal line 

indicates median; edges of box indicate 25th and 75th percentiles; whiskers indicate 5th and 95th 

percentiles. (c),(d) Hall mobility and carrier concentration, respectively, both increasing with growth 

temperature. Error bars indicate propagation of experimental uncertainty in thickness measurement by 

SEM and contact placement. 
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Figure 2. Measured internal quantum efficiency of SnS thin-film devices for the four growth 

temperatures (150°C in blue, 200°C in green, 240°C in purple, 285°C in red). The highlighted region 

indicates the wavelength range (700–950 nm) which was fitted using a one-dimensional opto-electronic 

model in SCAPS-1D. 
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Figure 3. SnS thin-film device parameters as a function of growth temperature (150°C in blue, 200°C in 

green, 240°C in purple, 285°C in red). (a) Current density  extracted from experimental IQE by 

integrating over the long-wavelength regime (700–950 nm). (b) Estimated depletion width  based on 

the measured hole concentration. Error bars represent uncertainty in material parameter values. (c) Fitted 

diffusion length  based on a one-dimensional opto-electronic model in SCAPS-1D. Error bars take 

into account both uncertainty in material parameters from the literature, as well as the effect of varying 

-dependent parameters other than hole concentration. 
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Figure 4. Contour plot of the current density  as a function of diffusion length  (abscissa) and 

hole concentration  (ordinate). The experimental data points representing each growth temperature are 

positioned based on measured carrier concentration and fitted diffusion length. Within the parameter 

space plotted, lower  and higher  tend to increase . 
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