6 research outputs found

    Modulation of the Conformational Dynamics of Apo-Adenylate Kinase through a π–Cation Interaction

    No full text
    Large-scale conformational transition from open to closed state of adenylate kinase (ADK) is essential for its catalytic cycle. Apo-ADK undergoes conformational transition in a way that closely resembles an open-to-closed conformational transition. Here, equilibrium simulations, free-energy simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations in combination with several bioinformatics approaches have been used to explore the molecular origin of this conformational transition in apo-ADK. In addition to its conventional open state, Escherichia coli apo-ADK adopts conformations that resemble a closed-like intermediate, the “half-open-half-closed” (HOHC) state, and a π–cation interaction can account for the stability of this HOHC state. Energetics and the electronic properties of this π–cation interaction have been explored using QM/MM calculations. Upon rescinding the π–cation interaction, the conformational landscape of the apo-ADK changes completely. The apo-ADK population is shifted completely toward the open state. This π–cation interaction is highly conserved in bacterial ADK; the cationic guanidinium moiety of a conserved ARG interacts with the delocalized π-electron cloud of either PHE or TYR. Interestingly, this study demonstrates the modulation of a principal protein dynamics by a conserved specific π–cation interaction across different organisms

    Aggregation-Induced Modulation of Ground and Excited State Photophysics of 5‑(<i>tert</i>-Butyl)-2-Hydroxy-1,3-Isophthalaldehyde (5‑<i>t</i>BHI)

    No full text
    5-(tert-Butyl)-2-hydroxy-1,3-isophthalaldehyde (5-tBHI) is a photochromic material susceptible to either excited state proton transfer or excited state intramolecular proton transfer, depending upon the solvent. However, it has also been found to aggregate in the presence of sodium dodecyl sulfate. In this current study, based on the steady-state and time-resolved spectroscopy, supported by crystallography, quantum chemical density functional theory calculation, and molecular dynamics (MD) simulation, we report on the aggregation of this potential single benzene-based emitter (SBBE) in neat solvents as well as solid phase to modulate its photophysics. It has been found that 5-tBHI forms mixed aggregates of different orders, owing to the presence of both enolic and tautomeric forms, to yield tunable emission, although the emission intensity is quenched. These findings suggest that the intramolecular hydrogen bonding of 5-tBHI not only limits intermolecular interactions but also promotes nonradiative deactivation pathways. Hence, designing and structural engineering, with a focus to suppressing intramolecular hydrogen bonding as well as increasing through space conjugation by replacing the aldehydic moieties with bulky aliphatic or aromatic ketonic groups, can be a plausible approach to yielding improved probes with tunable emission and higher fluorescence quantum yields

    Aggregation-Induced Modulation of Ground and Excited State Photophysics of 5‑(<i>tert</i>-Butyl)-2-Hydroxy-1,3-Isophthalaldehyde (5‑<i>t</i>BHI)

    No full text
    5-(tert-Butyl)-2-hydroxy-1,3-isophthalaldehyde (5-tBHI) is a photochromic material susceptible to either excited state proton transfer or excited state intramolecular proton transfer, depending upon the solvent. However, it has also been found to aggregate in the presence of sodium dodecyl sulfate. In this current study, based on the steady-state and time-resolved spectroscopy, supported by crystallography, quantum chemical density functional theory calculation, and molecular dynamics (MD) simulation, we report on the aggregation of this potential single benzene-based emitter (SBBE) in neat solvents as well as solid phase to modulate its photophysics. It has been found that 5-tBHI forms mixed aggregates of different orders, owing to the presence of both enolic and tautomeric forms, to yield tunable emission, although the emission intensity is quenched. These findings suggest that the intramolecular hydrogen bonding of 5-tBHI not only limits intermolecular interactions but also promotes nonradiative deactivation pathways. Hence, designing and structural engineering, with a focus to suppressing intramolecular hydrogen bonding as well as increasing through space conjugation by replacing the aldehydic moieties with bulky aliphatic or aromatic ketonic groups, can be a plausible approach to yielding improved probes with tunable emission and higher fluorescence quantum yields

    Aggregation-Induced Modulation of Ground and Excited State Photophysics of 5‑(<i>tert</i>-Butyl)-2-Hydroxy-1,3-Isophthalaldehyde (5‑<i>t</i>BHI)

    No full text
    5-(tert-Butyl)-2-hydroxy-1,3-isophthalaldehyde (5-tBHI) is a photochromic material susceptible to either excited state proton transfer or excited state intramolecular proton transfer, depending upon the solvent. However, it has also been found to aggregate in the presence of sodium dodecyl sulfate. In this current study, based on the steady-state and time-resolved spectroscopy, supported by crystallography, quantum chemical density functional theory calculation, and molecular dynamics (MD) simulation, we report on the aggregation of this potential single benzene-based emitter (SBBE) in neat solvents as well as solid phase to modulate its photophysics. It has been found that 5-tBHI forms mixed aggregates of different orders, owing to the presence of both enolic and tautomeric forms, to yield tunable emission, although the emission intensity is quenched. These findings suggest that the intramolecular hydrogen bonding of 5-tBHI not only limits intermolecular interactions but also promotes nonradiative deactivation pathways. Hence, designing and structural engineering, with a focus to suppressing intramolecular hydrogen bonding as well as increasing through space conjugation by replacing the aldehydic moieties with bulky aliphatic or aromatic ketonic groups, can be a plausible approach to yielding improved probes with tunable emission and higher fluorescence quantum yields

    Aggregation-Induced Modulation of Ground and Excited State Photophysics of 5‑(<i>tert</i>-Butyl)-2-Hydroxy-1,3-Isophthalaldehyde (5‑<i>t</i>BHI)

    No full text
    5-(tert-Butyl)-2-hydroxy-1,3-isophthalaldehyde (5-tBHI) is a photochromic material susceptible to either excited state proton transfer or excited state intramolecular proton transfer, depending upon the solvent. However, it has also been found to aggregate in the presence of sodium dodecyl sulfate. In this current study, based on the steady-state and time-resolved spectroscopy, supported by crystallography, quantum chemical density functional theory calculation, and molecular dynamics (MD) simulation, we report on the aggregation of this potential single benzene-based emitter (SBBE) in neat solvents as well as solid phase to modulate its photophysics. It has been found that 5-tBHI forms mixed aggregates of different orders, owing to the presence of both enolic and tautomeric forms, to yield tunable emission, although the emission intensity is quenched. These findings suggest that the intramolecular hydrogen bonding of 5-tBHI not only limits intermolecular interactions but also promotes nonradiative deactivation pathways. Hence, designing and structural engineering, with a focus to suppressing intramolecular hydrogen bonding as well as increasing through space conjugation by replacing the aldehydic moieties with bulky aliphatic or aromatic ketonic groups, can be a plausible approach to yielding improved probes with tunable emission and higher fluorescence quantum yields

    Role of Dispersive Fluorous Interaction in the Solvation Dynamics of the Perfluoro Group Containing Molecules

    No full text
    Perfluoro group containing molecules possess an important self-aggregation property through the fluorous (F···F) interaction which makes them useful for diverse applications such as medicinal chemistry, separation techniques, polymer technology, and biology. In this article, we have investigated the solvation dynamics of coumarin-153 (C153) and coumarin-6H (C6H) in ethanol (ETH), 2-fluoroethanol (MFE), and 2,2,2-trifluoroethanol (TFE) using the femtosecond upconversion technique and molecular dynamics (MD) simulation to understand the role of fluorous interaction between the solute and solvent molecules in the solvation dynamics of perfluoro group containing molecules. The femtosecond upconversion data show that the time scales of solvation dynamics of C6H in ETH, MFE, and TFE are approximately the same whereas the solvation dynamics of C153 in TFE is slow as compared to that of ETH and MFE. It has also been observed that the time scale of solvation dynamics of C6H in ETH and MFE is higher than that of C153 in the same solvents. MD simulation results show a qualitative agreement with the experimental data in terms of the time scale of the slow components of the solvation for all the systems. The experimental and simulation studies combined lead to the conclusion that the solvation dynamics of C6H in all solvents as well as C153 in ETH and MFE is mostly governed by the charge distribution of ester moieties (CO and O) of dye molecules whereas the solvation of C153 in TFE is predominantly due to the dispersive fluorous interaction (F···F) between the perfluoro groups of the C153 and solvent molecules
    corecore