33 research outputs found

    Investigation of process of interception in beech-fir stand on mountain Goch

    Get PDF
    Part of the precipitation is intercepted by vegetation before reaching the ground. The portion of intercepted water, which is retained in storage of the vegetal cover and evaporates, is called the interception loss. Interception represents important component of water balance, because of reduction of total rainfall. It decreases potential for forming of surface runoff. Depends on complex of vegetative and climate factors. In humid forested regions about 25% of the annual precipitation may become interception loss. Results of investigation in beech-fir stand on mountain Goch are presented in this paper Investigation was carried out on experimental catchment area Vaona IV (A=0.098 km2), in association Abieti-fagetum, on mountain Goch, in Central Serbia. Standard rain gauges were used to determine total precipitation and throughfalls, during vegetation period (1992-1997). Total interception (Ic) depends on total precipitation (Pb), kind of trees, shape and density of the crown, position in the stand and age. Average values of interception (Icsr) during vegetation period (1992-1997), amount to Icsr=43.7-53.3% of total precipitation (fir), and Icsr=17.7-22.8% (beech)

    Disaster Risk Reduction Based on a GIS Case Study of the Čađavica River Watershed

    Get PDF
    Background and Purpose: Although natural hazards cannot be prevented, a better understanding of the processes and scientific methodologies for their prediction can help mitigate their impact. Torrential floods, as one of the consequential forms of the existing erosion processes in synergy with extremely high precipitation, are the most frequent natural hazard at the regional level, which was confirmed by the catastrophic events in May 2014 when huge territories of Serbia, Bosnia and Herzegovina and Croatia were flood-struck. The basic input data for the design of protective structures in torrential beds and watershed slopes are the values of the maximal discharge, area sediment yields, and sediment transport. The calculation of these values requires a careful approach in accordance with the characteristics of torrential watersheds, such as the steepness of slopes and beds in torrential watersheds, intensive erosion processes, favorable conditions for fast runoff formation and the transport of huge quantities of sediment. Materials and Methods: The calculations of maximal discharges, area sediment yields, and sediment transport in the experimental watershed of the Čađavica River were based on using two different spatial resolutions of digital elevations models (DEMs) – 20 m resolution DEM, with land use determined from aerial photo images, and the 90 m resolution DEM, with land use determined on the basis of the CORINE database. The computation of maximal discharges was performed by applying a method that combined synthetic unit hydrograph (maximum ordinate of unit runoff qmax) and Soil Conservation Service methodologies (deriving effective rainfall Pe from total precipitation Pb). The computation was performed for AMC III (Antecedent Moisture Conditions III – high content of water in the soil and significantly reduced infiltration capacity). The computations of maximal discharges were done taking into account the regional analysis of lag time, internal daily distribution of precipitation and classification of soil hydrologic groups (for CN – runoff curve number determination). Area sediment yields and the intensity of erosion processes were estimated on the basis of the “Erosion Potential Method”. Results and Conclusions: The selected methodology was performed using different input data related to the DEM resolution. The results were illustrated using cartographic and numerical data. Information on relief conditions is a vital parameter for calculating the elements of the environmental conditions through the elements of maximal discharge, area sediment yields and sediment transport. The higher precision of input data of DEM provides a more precise spatial identification and a quantitative estimation of the endangered sites

    Land use change for flood protection: A prospective study for the restoration of the river Jelašnica watershed

    Get PDF
    Serbia’s hilly-mountainous regions are extremely vulnerable to flooding as a consequence of their natural characteristics and human impacts. Land mismanagement influences the development of erosion processes, and causes soil degradation that significantly reduces the land’s capacity to infiltrate and retain rainwater. Inappropriate land use as well as development activities replace permeable with impervious surfaces in the watershed. This leads to more rapid runoff generation and the more frequent appearance of torrential floods and bed-load deposits on downstream sections. Environmental degradation creates economicsocial problems within local societies which is often followed by depopulation. Restoring watersheds to their optimal hydrologic state would reduce flood discharge and by increasing groundwater recharge would increase both low-flow and average discharges in springs and streams. Best management practices could be developed through the application of specific combinations of biotechnical, technical and administrative measures, and by using the concept of ″natural reservoirs″. The design of such practices is explored through a case study of the watershed of the river Jelašnica, southeastern Serbia. Realization of these planned restoration works should help decrease the annual yields of erosive material by 44.1% and the specific annual transport of sediment through hydrographic network by 43.6%. Representative value of the coefficient of erosion will be reduced from Z=0.555 to Z=0.379. The value of maximal discharge Qmax-AMCIII (1%)=54.17 m3•s-1, before restoration, is decreased to Qmax-AMCIII (1%)=41.22 m3•s-1 after restoration, indicating the improvement of hydrological conditions, as a direct consequence of land use changes. Administrative measures are applied through ″Plans for announcement of erosive regions and protection from torrential floods in the territory of Leskovac municipality″

    Evaluation of Morphometric Terrain Parameters and Their Influence on Determining Optimal Density of Primary Forest Road Network

    Get PDF
    Planning forest truck roads network involves a lot of factors that directly affect their density and length. Depending on the purpose of the forest truck road network, this number is higher or lower. Our opinion was that these factors should be divided into invariable and variable. Common parameters, regardless of the purpose of the roads, are morphometric parameters because they can limit the length and density of the network of forest truck roads due to their variety of forms. For this reason, this paper deals exclusively with the morphometric characteristics of the terrain and their influence on the density of the network of forest truck roads. The DEM of the terrain was processed with GIS software based on the seven most important influencing factors. By standardizing the criteria, the obtained maps were reclassified, and then each of the seven selected parameters was weighted with the coefficients obtained by the AHP method. In this way, a map of the suitability of the terrain for the construction and addition to the existing network of forest truck roads was obtained. The terrain is divided into 4 categories of suitability. Zero lines were drawn with GIS tools for road design. During the creation of the optimal road network, it was tested with absolute and relative openness. As a final result, each of 26 Forest Economic Areas (FEA) was assigned to one of 4 categories of terrain suitability for the construction and density of the forest truck road network. For each category of terrain convenience, the optimal absolute and relative openness is shown. Based on this work, we suggest that the use of morphometric parameters should be considered as the first step of forest road planning in other regions

    Dripping Rainfall Simulators for Soil Research—Design Review

    Get PDF
    Dripping rainfall simulators are important instruments in soil research. However, a large number of non-standardized simulators have been developed, making it difficult to combine and compare the results of different studies in which they were used. To overcome this problem, it is necessary to become familiar with the design and performances of the current rainfall simulators. A search has been conducted for scientific papers describing dripping rainfall simulators (DRS) and papers that are thematically related to the soil research using DRS. Simulator design analysis was performed integrally, for simulators with more than one dripper (DRS>1) and with one dripper (DRS=1). Descriptive and numerical data were extracted from the papers and sorted by proposed categories, according to which the types and subtypes of used simulators are determined. The six groups of elements that simulators could consist of have been determined, as well their characteristics, representation and statistical analyses of the available numerical parameters. The characteristics of simulators are analyzed and presented, facilitating the selection of simulators for future research. Description of future simulators in accordance to the basic groups of simulator elements should provide all data necessary for their easier replication and provide a step closer to the reduction of design diversification and standardization of rainfall simulators intended for soil research

    Erosion control and protection from torrential floods in Serbia-spatial aspects

    Get PDF
    Torrential floods represent the most frequent phenomenon within the category of “natural risks” in Serbia. The representative examples are the torrential floods on the experimental watersheds of the rivers Manastirica (June 1996) and Kamišna (May 2007). Hystorical maximal discharges (Qmaxh) were reconstructed by use of ″hydraulics flood traces″ method. Computations of maximal discharges (Qmaxc), under hydrological conditions after the restoration of the watersheds, were performed by use of a synthetic unit hydrograph theory and Soil Conservation Service methodology. Area sediment yields and intensity of erosion processes were estimated on the basis of the “Erosion Potential Method”. The actual state of erosion processes is represented by the coefficients of erosion Z=0.475 (Manastirica) and Z=0.470 (Kamišna). Restoration works have been planned with a view to decreasing yields of erosive material, increasing water infiltration capacity and reducing flood runoff. The planned state of erosion processes is represented by the coefficients of erosion Z=0.343 (Manastirica) and Z=0.385 (Kamišna). The effects of hydrological changes were estimated by the comparison of historical maximal discharges and computed maximal discharges (under the conditions after the planned restoration). The realisation of restoration works will help decrease annual yields of erosive material from Wа=24357 m3 to Wа=16198.0 m3 (Manastirica) and from Wа=19974 m3 to Wа=14434 m3 (Kamišna). The values of historical maximal discharges (QmaxhMan=154.9 m3•s-1; QmaxhKam=76.3 m3•s-1) were significantly decreased after the restoration (QmaxcMan=84.5 m3 •s-1; QmaxcKam=43.7 m3•s-1), indicating the improvement of hydrological conditions, as a direct consequence of erosion and torrent control works. Integrated management involves biotechnical works on the watershed, technical works on the hydrographic network within a precisely defined administrative and spatial framework in order to achieve maximum security for people and their property and to meet other requirements such as: environmental protection, sustainable soil usage, drinking water supply, rural development, biodiversity sustaining, etc. The lowest and the most effective level is attained through PAERs (Plans for announcement of erosive regions) and PPTFs (Plans for protection from torrential floods), with HZs (Hazard zones) and TAs (Threatened areas) mapping on the basis of spatial analysis of important factors in torrential floods formation. Solutions defined through PAERs and PPTFs must be integrated into Spatial Plans at local and regional levels

    Erosion control and protection from torrential floods in Serbia-spatial aspects

    Get PDF
    Torrential floods represent the most frequent phenomenon within the category of 'natural risks' in Serbia. The representative examples are the torrential floods on the experimental watersheds of the rivers Manastirica (June 1996) and Kamišna (May 2007). Hystorical maximal discharges (Qmaxh) were reconstructed by use of 'hydraulics flood traces' method. Computations of maximal discharges (Qmaxc), under hydrological conditions after the restoration of the watersheds, were performed by use of a synthetic unit hydrograph theory and Soil Conservation Service methodology. Area sediment yields and intensity of erosion processes were estimated on the basis of the 'Erosion Potential Method'. The actual state of erosion processes is represented by the coefficients of erosion Z=0.475 (Manastirica) and Z=0.470 (Kamišna). Restoration works have been planned with a view to decreasing yields of erosive material, increasing water infiltration capacity and reducing flood runoff. The planned state of erosion processes is represented by the coefficients of erosion Z=0.343 (Manastirica) and Z=0.385 (Kamišna). The effects of hydrological changes were estimated by the comparison of historical maximal discharges and computed maximal discharges (under the conditions after the planned restoration). The realisation of restoration works will help decrease annual yields of erosive material from Wa=24357 m3 to Wa=16198.0 m3 (Manastirica) and from Wa=19974 m3 to Wa=14434 m3 (Kamišna). The values of historical maximal discharges (QmaxhMan=154.9 m3·s-1; QmaxhKam=76.3 m3·s-1) were significantly decreased after the restoration (QmaxcMan=84.5 m3 ·s-1; QmaxcKam=43.7 m3·s-1), indicating the improvement of hydrological conditions, as a direct consequence of erosion and torrent control works. Integrated management involves biotechnical works on the watershed, technical works on the hydrographic network within a precisely defined administrative and spatial framework in order to achieve maximum security for people and their property and to meet other requirements such as: environmental protection, sustainable soil usage, drinking water supply, rural development, biodiversity sustaining, etc. The lowest and the most effective level is attained through PAERs (Plans for announcement of erosive regions) and PPTFs (Plans for protection from torrential floods), with HZs (Hazard zones) and TAs (Threatened areas) mapping on the basis of spatial analysis of important factors in torrential floods formation. Solutions defined through PAERs and PPTFs must be integrated into Spatial Plans at local and regional levels

    Dripping Rainfall Simulators Design for Soil Research

    Get PDF
    Dripping rainfall simulators (DRS) are important instruments in soil research. However, a large number of non-standardized simulators have been developed, making it difficult to combine and compare the results of different studies in which they were used. To overcome such a problem, it is necessary to become familiar with the design and performances of the current rainfall simulators applied. It has been conducted a search for scientific papers describing dripping rainfall simulators and papers that are thematically related to soil research using DRS. Simulator design analysis was performed integrally, for simulators with more than one dripper (DRS>1) and with one dripper (DRS=1). Descriptive and numerical data were separated from the papers and sorted by proposed categories, according to which the types and subtypes of used simulators are determined. The six groups of elements that simulators could consist of have been determined, as well as their characteristics, representation, and statistical analyses of their available numerical parameters. The characteristics of simulators are analyzed and presented, thus is facilitated the selection of simulators for future research. Description of future simulators in accordance with the basic groups of simulator elements should provide all data necessary for their easier replication and provide a step closer to the reduction of design diversification and standardization of rain simulators intended for soil research

    Ocena nesigurnosti prostorne koncentracije oticaja primenom Monte Karlo stohastičkih simulacija

    Get PDF
    Very often, outputs provided by GIS functions and analysis are assumed as exact results. However, they are influenced by certain uncertainty which may affect the decisions based on those results. It is very complex and almost impossible to calculate that uncertainty using classical mathematical models because of very complex algorithms that are used in GIS analyses. In this paper we discuss an alternative method, i.e. the use of stochastic Monte Carlo simulations to estimate the uncertainty of flow accumulation. The case study area included the broader area of the Municipality of Čačak, where Monte Carlo stochastic simulations were applied in order to create one hundred possible outputs of flow accumulation. A statistical analysis was performed on the basis of these versions, and the 'most likely' version of flow accumulation in association with its confidence bounds (standard deviation) was created. Further, this paper describes the most important phases in the process of estimating uncertainty, such as variogram modelling and chooses the right number of simulations. Finally, it makes suggestions on how to effectively use and discuss the results and their practical significance.Izlazni rezultati dobijeni primenom GIS funkcija i alatki za analizu, obično se podrazumevaju kao tačni, međutim i oni su podložni nesigurnostima koje mogu uticati na odluke bazirane na tim istim rezultatima. Ocena uticaja nesigurnosti rezultata je veoma kompleksna i često nemoguća primenom standardnih matematičkih metoda s obzirom na veoma kompleksne algoritme koji se koriste u GIS analizama. U ovom radu razmatrano je alternativno rešenje kod ocene nesigurnosti prostorne koncentracije oticaja, primenom Monte Karlo stohastičkih simulacija. Za područje šireg obuhvata opštine Čačak generisano je sto mogućih izlaznih verzija rezultata prostorne koncentracije oticaja primenom Monte Karlo stohastičkih simulacija. Na osnovu njih, uz odgovarajuće statističke analize dobijena je 'najverovatnija' verzija prostorne koncentracije oticaja uz pripadajući interval poverenja odnosno standardne devijacije dobijenih rešenja. U radu su opisane najznačajnije faze u procesu ocene nesigurnosti, poput modeliranja variograma i odabira broja simulacija. Takođe je data i preporuka kako najefikasnije primeniti i diskutovati dobijene rezultate i njihovu značajnost
    corecore