117 research outputs found
To close or to collapse : the role of charges on membrane stability upon pore formation
Resealing of membrane pores is crucial for cell survival. We study membrane surface charge and medium composition as defining regulators of membrane stability. Pores are generated by electric field or detergents. Giant vesicles composed of zwitterionic and negatively charged lipids mixed at varying ratios are subjected to a single strong electric pulse. Charged vesicles are prone to catastrophic collapse transforming them into tubular structures. The spectrum of destabilization responses includes the generation of long-living submicroscopic pores and partial vesicle bursting. The origin of these phenomena is related to the membrane edge tension, which governs pore closure. This edge tension significantly decreases as a function of the fraction of charged lipids. Destabilization of charged vesicles upon pore formation is universal – it is also observed with other poration stimuli. Disruption propensity is enhanced for membranes made of lipids with higher degree of unsaturation. It can be reversed by screening membrane charge in the presence of calcium ions. We interpret the observed findings in light of theories of stability and curvature generation and discuss mechanisms acting in cells to prevent total membrane collapse upon poration. Enhanced membrane stability is crucial for the success of electroporation-based technologies for cancer treatment and gene transfer.Competing Interest StatementThe authors have declared no competing interest
Accounting Profession in Belgium; Professional Accounting in Foreign Country Series
https://egrove.olemiss.edu/aicpa_guides/1671/thumbnail.jp
The underlying mechanical properties of membranes tune their ability to fuse
Membrane fusion is a ubiquitous process associated with a multitude of biological events. Although it has long been appreciated that membrane mechanics plays an important role in membrane fusion, the molecular interplay between mechanics and fusion has remained elusive. For example, although different lipids modulate membrane mechanics differently, depending on their composition, molar ratio and complex interactions, differing lipid compositions may lead to similar mechanical properties. This raises the question of whether (i) the specific lipid composition or (ii) the average mesoscale mechanics of membranes acts as the determining factor for cellular function. Furthermore, little is known about the potential consequences of fusion on membrane disruption. Here, we use a combination of confocal microscopy, time-resolved imaging and electroporation to shed light onto the underlying mechanical properties of membranes that regulate membrane fusion. Fusion efficiency follows a nearly universal behavior that depends on membrane fluidity parameters, such as membrane viscosity and bending rigidity, rather than on specific lipid composition. This helps explaining why the charged and fluid membranes of the inner leaflet of the plasma membrane is more fusogenic than their outer counterparts. Importantly, we show that physiological levels of cholesterol, a key component of biological membranes, has a mild effect on fusion but significantly enhances membrane mechanical stability against pore formation, suggesting that its high cellular levels buffer the membrane against disruption. The ability of membranes to efficiently fuse while preserving their integrity may have given evolutionary advantages to cells by enabling their function while preserving membrane stability.</p
The underlying mechanical properties of membranes tune their ability to fuse
Membrane fusion is a ubiquitous process associated with a multitude of biological events. Although it has long been appreciated that membrane mechanics plays an important role in membrane fusion, the molecular interplay between mechanics and fusion has remained elusive. For example, although different lipids modulate membrane mechanics differently, depending on their composition, molar ratio and complex interactions, differing lipid compositions may lead to similar mechanical properties. This raises the question of whether (i) the specific lipid composition or (ii) the average mesoscale mechanics of membranes acts as the determining factor for cellular function. Furthermore, little is known about the potential consequences of fusion on membrane disruption. Here, we use a combination of confocal microscopy, time-resolved imaging and electroporation to shed light onto the underlying mechanical properties of membranes that regulate membrane fusion. Fusion efficiency follows a nearly universal behavior that depends on membrane fluidity parameters, such as membrane viscosity and bending rigidity, rather than on specific lipid composition. This helps explaining why the charged and fluid membranes of the inner leaflet of the plasma membrane is more fusogenic than their outer counterparts. Importantly, we show that physiological levels of cholesterol, a key component of biological membranes, has a mild effect on fusion but significantly enhances membrane mechanical stability against pore formation, suggesting that its high cellular levels buffer the membrane against disruption. The ability of membranes to efficiently fuse while preserving their integrity may have given evolutionary advantages to cells by enabling their function while preserving membrane stability.</p
Capsaicin cyclodextrin complex enhances mepivacaine targeting and improves local anesthesia in inflamed tissues
Acidic environments, such as in inflamed tissues, favor the charged form of local anesthetics LA . Hence, these drugs show less cell permeation and diminished potency. Since the analgesic capsaicin CAP triggers opening of the TRPV1 receptor pore, its combination with LAs could result in better uptake and improved anesthesia. We tested the above hypothesis and report here for the first time the analgesia effect of a two drug combination LA and CAP on an inflamed tissue. First, CAP solubility increased up to 20 times with hydroxypropyl beta cyclodextrin HP amp; 946; CD , as shown by the phase solubility study. The resulting complex HP amp; 946; CD CAP showed 1 1 stoichiometry and high association constant, according to phase solubility diagrams and isothermal titration calorimetry data. The inclusion complex formation was also confirmed and characterized by differential scanning calorimetry DSC , X ray diffraction, and 1H NMR. The freeze dried complex showed physicochemical stability for at least 12 months. To test in vivo performance, we used a pain model based on mouse paw edema. Results showed that 2 mepivacaine injection failed to anesthetize mice inflamed paw, but its combination with complexed CAP resulted in pain control up to 45 min. These promising results encourages deeper research of CAP as an adjuvant for anesthesia in inflamed tissues and cyclodextrin as a solubilizing agent for targeting molecules in drug deliver
- …