19 research outputs found

    A Multiscale Model for Virus Capsid Dynamics

    Get PDF
    Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows

    Impaired degranulation but enhanced cytokine production after FcɛRI stimulation of diacylglycerol kinase ζ–deficient mast cells

    Get PDF
    Calcium and diacylglycerol are critical second messengers that together effect mast cell degranulation after allergen cross-linking of immunoglobulin (Ig)E-bound FcɛRI. Diacylglycerol kinase (DGK)ζ is a negative regulator of diacylglycerol-dependent signaling that acts by converting diacylglycerol to phosphatidic acid. We reported previously that DGKζ−/− mice have enhanced in vivo T cell function. Here, we demonstrate that these mice have diminished in vivo mast cell function, as revealed by impaired local anaphylactic responses. Concordantly, DGKζ−/− bone marrow–derived mast cells (BMMCs) demonstrate impaired degranulation after FcɛRI cross-linking, associated with diminished phospholipase Cγ activity, calcium flux, and protein kinase C–βII membrane recruitment. In contrast, Ras-Erk signals and interleukin-6 production are enhanced, both during IgE sensitization and after antigen cross-linking of FcɛRI. Our data demonstrate dissociation between cytokine production and degranulation in mast cells and reveal the importance of DGK activity during IgE sensitization for proper attenuation of FcɛRI signals

    Diacylglycerol kinase ζ regulates microbial recognition and host resistance to Toxoplasma gondii

    Get PDF
    Mammalian Toll-like receptors (TLRs) recognize microbial pathogen-associated molecular patterns and are critical for innate immunity against microbial infection. Diacylglycerol (DAG) kinases (DGKs) regulate the intracellular levels of two important second messengers involved in signaling from many surface receptors by converting DAG to phosphatidic acid (PA). We demonstrate that the ζ isoform of the DGK family (DGKζ) is expressed in macrophages (Mφ) and dendritic cells. DGKζ deficiency results in impaired interleukin (IL) 12 and tumor necrosis factor α production following TLR stimulation in vitro and in vivo, increased resistance to endotoxin shock, and enhanced susceptibility to Toxoplasma gondii infection. We further show that DGKζ negatively controls the phosphatidylinositol 3–kinase (PI3K)–Akt pathway and that inhibition of PI3K activity or treatment with PA can restore lipopolysaccharide-induced IL-12 production by DGKζ-deficient Mφ. Collectively, our data provide the first genetic evidence that an enzyme involved in DAG/PA metabolism plays an important role in innate immunity and indicate that DGKζ promotes TLR responses via a pathway involving inhibition of PI3K

    Novel peanut-specific human IgE monoclonal antibodies enable screens for inhibitors of the effector phase in food allergy

    Get PDF
    Background 10% of US residents have food allergies, including 2% with peanut allergy. Mast cell mediators released during the allergy effector phase drive allergic reactions. Therefore, targeting sensitized mast cells may prevent food allergy symptoms. Objective We used novel, human, allergen-specific, IgE monoclonal antibodies (mAbs) created using human hybridoma techniques to design an in vitro system to evaluate potential therapeutics targeting sensitized effector cells. Methods Two human IgE mAbs specific for peanut, generated through human hybridoma techniques, were used to sensitize rat basophilic leukemia (RBL) SX-38 cells expressing the human IgE receptor (FcϵRI). Beta-hexosaminidase release (a marker of degranulation), cytokine production, and phosphorylation of signal transduction proteins downstream of FcϵRI were measured after stimulation with peanut. Degranulation was also measured after engaging inhibitory receptors CD300a and Siglec-8. Results Peanut-specific human IgE mAbs bound FcϵRI, triggering degranulation after stimulation with peanut in RBL SX-38 cells. Sensitized RBL SX-38 cells stimulated with peanut increased levels of phosphorylated SYK and ERK, signal transduction proteins downstream of FcϵRI. Engaging inhibitory cell surface receptors CD300a or Siglec-8 blunted peanut-specific activation. Conclusion Allergen-specific human IgE mAbs, expressed from human hybridomas and specific for a clinically relevant food allergen, passively sensitize allergy effector cells central to the in vitro models of the effector phase of food allergy. Peanut reproducibly activates and induces degranulation of RBL SX-38 cells sensitized with peanut-specific human IgE mAbs. This system provides a unique screening tool to assess the efficacy of therapeutics that target allergy effector cells and inhibit food allergen-induced effector cell activation

    Table_1_Novel peanut-specific human IgE monoclonal antibodies enable screens for inhibitors of the effector phase in food allergy.docx

    No full text
    Background10% of US residents have food allergies, including 2% with peanut allergy. Mast cell mediators released during the allergy effector phase drive allergic reactions. Therefore, targeting sensitized mast cells may prevent food allergy symptoms.ObjectiveWe used novel, human, allergen-specific, IgE monoclonal antibodies (mAbs) created using human hybridoma techniques to design an in vitro system to evaluate potential therapeutics targeting sensitized effector cells.MethodsTwo human IgE mAbs specific for peanut, generated through human hybridoma techniques, were used to sensitize rat basophilic leukemia (RBL) SX-38 cells expressing the human IgE receptor (FcϵRI). Beta-hexosaminidase release (a marker of degranulation), cytokine production, and phosphorylation of signal transduction proteins downstream of FcϵRI were measured after stimulation with peanut. Degranulation was also measured after engaging inhibitory receptors CD300a and Siglec-8.ResultsPeanut-specific human IgE mAbs bound FcϵRI, triggering degranulation after stimulation with peanut in RBL SX-38 cells. Sensitized RBL SX-38 cells stimulated with peanut increased levels of phosphorylated SYK and ERK, signal transduction proteins downstream of FcϵRI. Engaging inhibitory cell surface receptors CD300a or Siglec-8 blunted peanut-specific activation.ConclusionAllergen-specific human IgE mAbs, expressed from human hybridomas and specific for a clinically relevant food allergen, passively sensitize allergy effector cells central to the in vitro models of the effector phase of food allergy. Peanut reproducibly activates and induces degranulation of RBL SX-38 cells sensitized with peanut-specific human IgE mAbs. This system provides a unique screening tool to assess the efficacy of therapeutics that target allergy effector cells and inhibit food allergen-induced effector cell activation.</p
    corecore