13 research outputs found

    The association between changes in echocardiography and risk of heart failure hospitalizations and death in adults with chronic kidney disease

    No full text
    Abstract Adults with chronic kidney disease (CKD) are at increased risk for developing heart failure (HF). However, longitudinal cardiac remodeling in CKD has not been well-characterized and its association with HF outcomes remains unknown. We evaluated the association between change in echocardiographic parameters between baseline and year 4 with the subsequent risk of HF hospitalization and death using Cox proportional hazard models in a landmark analysis of a prospective multicenter CKD cohort. Among 2673 participants, mean ± SD age was 61 ± 11 years, with 45% women, and 56% non-white. A total of 472 hospitalizations for HF and 776 deaths occurred during a median (interquartile range) follow-up duration of 8.0 (6.3–9.1) years. Patients hospitalized for HF experienced larger preceding absolute increases in left ventricular (LV) volumes and decreases in LV ejection fraction. Adverse changes in LV ejection fraction, LV cavity volume, LV mass index, and LV geometry were independently associated with an increased risk of HF hospitalization and death. Among adults with CKD, deleterious cardiac remodeling occurs over a relatively short timeframe and adverse remodeling is associated with increased risk of HF-related morbidity and mortality

    Kidney function, proteinuria and breast arterial calcification in women without clinical cardiovascular disease: The MINERVA study.

    No full text
    BackgroundBreast arterial calcification (BAC) may be a predictor of cardiovascular events and is highly prevalent in persons with end-stage kidney disease. However, few studies to date have examined the association between mild-to-moderate kidney function and proteinuria with BAC.MethodsWe prospectively enrolled women with no prior cardiovascular disease aged 60 to 79 years undergoing mammography screening at Kaiser Permanente Northern California between 10/24/2012 and 2/13/2015. Urine albumin-to-creatinine ratio (uACR), along with specific laboratory, demographic, and medical data, were measured at the baseline visit. Baseline estimated glomerular filtration rate (eGFR), medication history, and other comorbidities were identified from self-report and/or electronic medical records. BAC presence and gradation (mass) was measured by digital quantification of full-field mammograms.ResultsAmong 3,507 participants, 24.5% were aged ≥70 years, 63.5% were white, 7.5% had eGFR 0 mg) was 27.9%. Neither uACR ≥30 mg/g nor uACR ≥300 were significantly associated with BAC in crude or multivariable analyses. Reduced eGFR was associated with BAC in univariate analyses (odds ratio 1.53, 95% CI: 1.18-2.00), but the association was no longer significant after adjustment for potential confounders. Results were similar in various sensitivity analyses that used different BAC thresholds or analytic approaches.ConclusionsAmong women without cardiovascular disease undergoing mammography screening, reduced eGFR and albuminuria were not significantly associated with BAC

    Non-recovery from dialysis-requiring acute kidney injury and short-term mortality and cardiovascular risk: a cohort study

    Get PDF
    Abstract Background The high mortality and cardiovascular disease (CVD) burden in patients with end-stage renal disease (ESRD) is well-documented. Recent literature suggests that acute kidney injury is also associated with CVD. It is unknown whether patients with incident ESRD due to dialysis-requiring acute kidney injury (AKI-D) are at higher short-term risk for death and CVD events, compared with incident ESRD patients without preceding AKI-D. Few studies have examined the impact of recovery from AKI-D on subsequent CVD risk. Methods In this retrospective cohort study, we evaluated adult members of Kaiser Permanente Northern California who initiated dialysis from January 2009 to September 2015. Preceding AKI-D and subsequent outcomes of death and CVD events (acute coronary syndrome, heart failure, ischemic stroke or transient ischemic attack) were identified from electronic health records. We performed multivariable Cox regression models adjusting for demographics, comorbidities, medication use, and laboratory results. Results Compared to incident ESRD patients who experienced AKI-D (n = 1865), patients with ESRD not due to AKI-D (n = 3772) had significantly lower adjusted rates of death (adjusted hazard ratio [aHR] 0.56, 95% CI: 0.47–0.67) and heart failure hospitalization (aHR 0.45, 0.30–0.70). Compared to AKI-D patients who did not recover and progressed to ESRD, AKI-D patients who recovered (n = 1347) had a 30% lower adjusted relative rate of death (aHR 0.70, 0.55–0.88). Conclusions Patients who transition to ESRD via AKI-D are a high-risk subgroup that may benefit from aggressive monitoring and medical management, particularly for heart failure. Recovery from AKI-D is independently associated with lower short-term mortality

    Race, Genetic Ancestry, and Estimating Kidney Function in CKD

    No full text
    BackgroundThe inclusion of race in equations to estimate the glomerular filtration rate (GFR) has become controversial. Alternative equations that can be used to achieve similar accuracy without the use of race are needed.MethodsIn a large national study involving adults with chronic kidney disease, we conducted cross-sectional analyses of baseline data from 1248 participants for whom data, including the following, had been collected: race as reported by the participant, genetic ancestry markers, and the serum creatinine, serum cystatin C, and 24-hour urinary creatinine levels.ResultsUsing current formulations of GFR estimating equations, we found that in participants who identified as Black, a model that omitted race resulted in more underestimation of the GFR (median difference between measured and estimated GFR, 3.99 ml per minute per 1.73 m2 of body-surface area; 95% confidence interval [CI], 2.17 to 5.62) and lower accuracy (percent of estimated GFR within 10% of measured GFR [P10], 31%; 95% CI, 24 to 39) than models that included race (median difference, 1.11 ml per minute per 1.73 m2; 95% CI, -0.29 to 2.54; P10, 42%; 95% CI, 34 to 50). The incorporation of genetic ancestry data instead of race resulted in similar estimates of the GFR (median difference, 1.33 ml per minute per 1.73 m2; 95% CI, -0.12 to 2.33; P10, 42%; 95% CI, 34 to 50). The inclusion of non-GFR determinants of the serum creatinine level (e.g., body-composition metrics and urinary excretion of creatinine) that differed according to race reported by the participants and genetic ancestry did not eliminate the misclassification introduced by removing race (or ancestry) from serum creatinine-based GFR estimating equations. In contrast, the incorporation of race or ancestry was not necessary to achieve similarly statistically unbiased (median difference, 0.33 ml per minute per 1.73 m2; 95% CI, -1.43 to 1.92) and accurate (P10, 41%; 95% CI, 34 to 49) estimates in Black participants when GFR was estimated with the use of cystatin C.ConclusionsThe use of the serum creatinine level to estimate the GFR without race (or genetic ancestry) introduced systematic misclassification that could not be eliminated even when numerous non-GFR determinants of the serum creatinine level were accounted for. The estimation of GFR with the use of cystatin C generated similar results while eliminating the negative consequences of the current race-based approaches. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others.)
    corecore