14 research outputs found

    Neuroanatomical Circuitry Associated with Exploratory Eye Movement in Schizophrenia: A Voxel-Based Morphometric Study

    Get PDF
    Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM) dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS) and widespread gray matter density (GMD) reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA) 17], the left cuneus (BA 18), the left superior occipital cortex (BA 18/19), the left superior frontal gyrus (BA 6), the left cerebellum, the right lingual cortex (BA 17/18), the right middle occipital cortex (BA19), the right inferior temporal cortex (BA 37), the right dorsolateral prefrontal cortex (BA 46) and bilateral precentral gyri (BA 6) extending to the frontal eye fields (FEF, BA 8). To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia

    The Precipitation Behavior in Al<sub>0.3</sub>CoCrFeNi High-Entropy Alloy Affected by Deformation and Annealing

    No full text
    The effects of deformation and annealing on the precipitation behaviors, including the structure and chemical composition of the L12, B2, BCC and σ phases, in Al0.3CoCrFeNi high entropy alloy were analyzed. Firstly, the thermodynamic factors controlled the precipitation pathway in as-cast alloys, which led to the L12 precipitating homogeneously in the FCC matrix under a low annealing temperature, while the B2 precipitated under a high annealing temperature. In contrast, if the deformation was introduced before annealing, the precipitation pathway of the second phase was completely changed to the B2, BCC and σ phases because of the combination of thermodynamic and kinetic conditions. In particular, the B2 and σ phases promoted the precipitation behavior reciprocally due to the complementary chemical compositions. The elaborate precipitation behaviors of the L12, B2, BCC and σ phases were analyzed to identify the phase transformation in the Al0.3CoCrFeNi HEA. These transformation pathways and elaborate structural features of the L12, B2, BCC and σ phases provide various design possibilities for the microstructures and properties of single FCC HEAs

    The Effects of Annealing at Different Temperatures on Microstructure and Mechanical Properties of Cold-Rolled Al0.3CoCrFeNi High-Entropy Alloy

    No full text
    In this work, cold-rolling was utilized to induce a high density of crystal defects in Al0.3CoCrFeNi high-entropy alloys. The effects of annealing temperature on static recrystallization, precipitation behavior and mechanical properties were investigated. With increasing annealing temperature from 590 °C to 800 °C, the area fraction of recrystallized region increases from 26.9% to 93.9%. Cold-rolling deformation largely promotes the precipitation of B2 phases during annealing, and the characteristics of the precipitates are linked to recrystallization level. The coarse and equiaxed B2 phases exist in the recrystallized region and the fine and elongated B2 phases occupy the non-recrystallized region. Combined use of cold-rolling and annealing can remarkably enhance the strength and toughness. A partially recrystallized microstructure in a cold-rolled sample annealed at 700 °C exhibits a better combination of strength and toughness than a fully recrystallized microstructure in a cold-rolled sample annealed at 800 °C. Finally, related mechanisms are discussed

    Correlations between exploratory eye movement, hallucination, and cortical gray matter volume in people with schizophrenia

    No full text
    Abstract Background Widespread cortical gray matter alternations in people with schizophrenia are correlated with both psychotic symptoms and cognitive/behavioral abnormalities, including the impairments of exploratory eye movement (EEM). Particularly, the loss of gray matter density is specifically related to deficits of the responsive search score (RSS) of EEM in schizophrenia. It is unknown, however, whether the schizophrenia-related RSS deficits are associated with certain psychotic symptoms, such as hallucinations. Methods In 33 participants with schizophrenia, the measurement of EEM, assessment of the hallucination severity using Positive and Negative Syndrome Scale (PANSS) and a voxel-based morphometric analysis of cortical gray matter volume (GMV) were conducted to investigate the relationships between the RSS of EEM, symptom severity, and GMV. In 29 matched healthy controls, the measurement of EEM and a voxel-based morphometric analysis of cortical GMV were also conducted to investigate the relationship between the RSS of EEM and GMV. Results In participants with schizophrenia, the hallucination severity was significantly negatively correlated with both the RSS and the GMV of a large number of brain regions in the frontal, temporal, parietal, orbitofrontal, calcarine, cingulate, and insular cortices, and rolandic operculum, hippocampus, parahippocampal gyrus, and thalamus. Also in participants with schizophrenia, the RSS was significantly positively correlated with the GMV in the left supplementary motor area (SMA), left superior frontal cortex (SFG), bilateral precentral gyri, bilateral postcentral gyri, and bilateral middle frontal cortices. More importantly, the GMV of the SMA, SFG, and precentral gyrus in the left hemisphere was not only significantly negatively correlated with the hallucination severity but also significantly positively correlated with the RSS. No significant correlation could be revealed between the RSS and the GMV of any brain regions in healthy controls. Conclusions There was a significantly negative association between the hallucination severity and the RSS of EEM, suggesting that the RSS may be a potential biomarker for predicting the hallucination severity of schizophrenia. Also, the GMV of the left SMA, SFG, and precentral gyrus may be the common substrates underlying both hallucination induction and the RSS in people with schizophrenia

    Regulating Precipitates by Simple Cold Deformations to Strengthen Mg Alloys: A Review

    No full text
    Regulating precipitates is still an important issue in the development of high-strength Mg alloys, due to it determining the precipitation hardening effect. Cold deformation, as a simple and low-cost method, can remarkably influence the precipitate features. It is found that pre-cold deformation before aging can be utilized to enhance the precipitation hardening effect of Mg alloys. Moreover, post-deformation after aging could be an effective method to regulate precipitation orientation. In this review, recent research on the regulation of precipitation behavior by cold deformation in Mg-Al, Mg-Zn, and Mg-RE (RE: rare-earth elements) alloy systems was critically reviewed. The changes in precipitate features and mechanical properties of peak-aged Mg alloys via cold deformation were summarized. The corresponding strengthening mechanisms were also discussed. Finally, further research directions in this field were proposed

    Simulation Experiment of Environmental Impact of Deep-Sea Mining: Response of Phytoplankton Community to Polymetallic Nodules and Sediment Enrichment in Surface Water

    No full text
    In this paper, simulation experiments were conducted to study the response of phytoplankton biomass and community composition to the influence of polymetallic nodules and sediment at four stations in the western Pacific in 2021. Chlorophyll a, pico-phytoplankton cell abundance, and metal concentration were measured before and after 24 h of deck incubation. The results show that there were three different patterns of response, namely, restrained, stimulated, and unaffected patterns. The restrained pattern appeared in the filtered treatments at station Incub.01, and the stimulated pattern appeared in the unfiltered treatments at station Incub.02. The response of the phytoplankton was not detectable at stations Incub.03 and 04. Regardless, positive and negative responses were found in the dominant pico-phytoplankton group—Prochlorococcus—and with slight variation in Synechococcus. The concentration of manganese varied among the treatments compared to that of iron and other metals. The factors affecting the growth of the phytoplankton in this study were metal concentrations and turbidity. The phytoplankton biomass baseline may also have played an important role: the lower the biomass, the higher the growth rate. This study proved that deep-sea polymetallic nodule mining will have a specific impact on surface phytoplankton biomass, but turbidity and particle retention time could be important factors in mitigating the extent of the impact

    Crystalline Two-Dimensional DNA-Origami Arrays

    No full text
    DNA origami gets large: a double-layer DNA-origami tile with two orthogonal domains underwent self-assembly into well-ordered two-dimensional DNA arrays with edge dimensions of 2-3 μm (see schematic representation and AFM image). This size is likely to be large enough to connect bottom-up methods of patterning with top-down approaches
    corecore