1,981 research outputs found

    New County Distribution Record for the Seminole Bat in Arkansas

    Get PDF

    Association of smoking and nicotine dependence with pre-diabetes in young and healthy adults.

    Get PDF
    INTRODUCTION: Several studies have shown an increased risk of type 2 diabetes among smokers. Therefore, the aim of this analysis was to assess the relationship between smoking, cumulative smoking exposure and nicotine dependence with pre-diabetes. METHODS: We performed a cross-sectional analysis of healthy adults aged 25-41 in the Principality of Liechtenstein. Individuals with known diabetes, Body Mass Index (BMI) >35 kg/mÂČ and prevalent cardiovascular disease were excluded. Smoking behaviour was assessed by self-report. Pre-diabetes was defined as glycosylated haemoglobin between 5.7% and 6.4%. Multivariable logistic regression models were done. RESULTS: Of the 2142 participants (median age 37 years), 499 (23.3%) had pre-diabetes. There were 1,168 (55%) never smokers, 503 (23%) past smokers and 471 (22%) current smokers, with a prevalence of pre-diabetes of 21.2%, 20.9% and 31.2%, respectively (p <0.0001). In multivariable regression models, current smokers had an odds ratio (OR) of pre-diabetes of 1.82 (95% confidential interval (CI) 1.39; 2.38, p <0.0001). Individuals with a smoking exposure of <5, 5-10 and >10 pack-years had an OR (95% CI) for pre-diabetes of 1.34 (0.90; 2.00), 1.80 (1.07; 3.01) and 2.51 (1.80; 3.59) (p linear trend <0.0001) compared with never smokers. A Fagerström score of 2, 3-5 and >5 among current smokers was associated with an OR (95% CI) for pre-diabetes of 1.27 (0.89; 1.82), 2.15 (1.48; 3.13) and 3.35 (1.73; 6.48) (p linear trend <0.0001). DISCUSSION: Smoking is strongly associated with pre-diabetes in young adults with a low burden of smoking exposure. Nicotine dependence could be a potential mechanism of this relationship

    Label-Free C-Reactive Protein Si Nanowire FET Sensor Arrays With Super-Nernstian Back-Gate Operation

    Get PDF
    We present a CMOS-compatible double gate and label-free C-reactive protein (CRP) sensor, based on silicon on insulator (SOI) silicon nanowires arrays. We exploit a reference subtracted detection method and a super-Nernstian internal amplification given by the double gate structure. We overcome the Debye screening of charged CRP proteins in solutions using antibodies fragments as capturing probes, reducing the overall thickness of the capture layer. We demonstrate the internal amplification through the pH response of the sensor, in static and real-time working modes. While operated in back-gate configuration, the sensor shows excellent stability (<20 pA/min in the worst case), low hysteresis (<300 mV), and a great sensitivity up to 1.2 nA/dec toward CRP proteins in the linear response range. The reported system is an excellent candidate for the continuous monitoring of inflammation biomarkers in serum or interstitial fluid

    DNA transport by a micromachined Brownian ratchet device

    Get PDF
    We have micromachined a silicon-chip device that transports DNA with a Brownian ratchet that rectifies the Brownian motion of microscopic particles. Transport properties for a DNA 50mer agree with theoretical predictions, and the DNA diffusion constant agrees with previous experiments. This type of micromachine could provide a generic pump or separation component for DNA or other charged species as part of a microscale lab-on-a-chip. A device with reduced feature size could produce a size-based separation of DNA molecules, with applications including the detection of single nucleotide polymorphisms.Comment: Latex: 8 pages, 4 figure

    Intermediate window observable for the hadronic vacuum polarization contribution to the muon g−2g-2 from O(a)(a) improved Wilson quarks

    Get PDF
    Following the publication of the new measurement of the anomalous magnetic moment of the muon, the discrepancy between experiment and the theory prediction from the g−2 theory initiative has increased to 4.2σ. Recent lattice QCD calculations predict values for the hadronic vacuum polarization contribution that are larger than the data-driven estimates, bringing the Standard Model prediction closer to the experimental measurement. Euclidean time windows in the time-momentum representation of the hadronic vacuum polarization contribution to the muon g−2 can help clarify the discrepancy between the phenomenological and lattice predictions. We present our calculation of the intermediate distance window contribution using Nf=2+1 flavors of O(a) improved Wilson quarks. We employ ensembles at six lattice spacings below 0.1fm and pion masses down to the physical value. We present a detailed study of the continuum limit, using two discretizations of the vector current and two independent sets of improvement coefficients. Our result at the physical point displays a tension of 3.9σ with a recent evaluation of the intermediate window based on the data-driven method

    More salt, please:global patterns, responses, and impacts of foliar sodium in grasslands

    Get PDF
    Sodium is unique among abundant elemental nutrients, because most plant species do not require it for growth or development, whereas animals physiologically require sodium. Foliar sodium influences consumption rates by animals and can structure herbivores across landscapes. We quantified foliar sodium in 201 locally abundant, herbaceous species representing 32 families and, at 26 sites on four continents, experimentally manipulated vertebrate herbivores and elemental nutrients to determine their effect on foliar sodium. Foliar sodium varied taxonomically and geographically, spanning five orders of magnitude. Site‐level foliar sodium increased most strongly with site aridity and soil sodium; nutrient addition weakened the relationship between aridity and mean foliar sodium. Within sites, high sodium plants declined in abundance with fertilisation, whereas low sodium plants increased. Herbivory provided an explanation: herbivores selectively reduced high nutrient, high sodium plants. Thus, interactions among climate, nutrients and the resulting nutritional value for herbivores determine foliar sodium biogeography in herbaceous‐dominated systems

    Organophosphate Insecticides Target the Serotonergic System in Developing Rat Brain Regions: Disparate Effects of Diazinon and Parathion at Doses Spanning the Threshold for Cholinesterase Inhibition

    Get PDF
    BACKGROUND: In the developing brain, serotonin (5HT) systems are among the most sensitive to disruption by organophosphates. OBJECTIVES: We exposed neonatal rats to daily doses of diazinon or parathion on postnatal days (PND)1–4 and evaluated 5HT receptors and the 5HT transporter in brainstem and forebrain on PND5, focusing on doses of each agent below the maximum tolerated dose and spanning the threshold for cholinesterase inhibition: 0.5, 1, or 2 mg/kg for diazinon, and 0.02, 0.05, and 0.1 mg/kg for parathion. RESULTS: Diazinon evoked up-regulation of 5HT(1A) and 5HT(2) receptor expression even at doses devoid of effects on cholinesterase activity, a pattern similar to that seen earlier for another organophosphate, chlorpyrifos. In contrast, parathion decreased 5HT(1A) receptors, again at doses below those required for effects on cholinesterase. The two agents also differed in their effects on the 5HT transporter. Diazinon evoked a decrease in the brainstem and an increase in the forebrain, again similar to that seen for chlorpyrifos; this pattern is typical of damage of nerve terminals and reactive sprouting. Parathion had smaller, nonsignificant effects. CONCLUSIONS: Our results buttress the idea that, in the developing brain, the various organophosphates target specific neurotransmitter systems differently from each other and without the requirement for cholinesterase inhibition, their supposed common mechanism of action
    • 

    corecore