188 research outputs found

    Bovine explant model of degeneration of the intervertebral disc

    Get PDF
    BACKGROUND: Many new treatments for degeneration of the intervertebral disc are being developed which can be delivered through a needle. These require testing in model systems before being used in human patients. Unfortunately, because of differences in anatomy, there are no ideal animal models of disc degeneration. Bovine explant model systems have many advantages but it is not possible to inject any significant volume into an intact disc. Therefore we have attempted to mimic disc degeneration in an explant bovine model via enzymatic digestion. METHODS: Bovine coccygeal discs were incubated with different concentrations of the proteolytic enzymes, trypsin and papain, and maintained in culture for up to 3 weeks. A radio-opaque solution was injected to visualise cavities generated. Degenerative features were monitored histologically and biochemically (water and glycosaminoglycan content, via dimethylmethylene blue). RESULTS AND CONCLUSION: The central region of both papain and trypsin treated discs was macro- and microscopically fragmented, with severe loss of metachromasia. The integrity of the surrounding tissue was mostly in tact with cells in the outer annulus appearing viable. Biochemical analysis demonstrated greatly reduced glycosaminoglycan content in these compared to untreated discs. We have shown that bovine coccygeal discs, treated with proteolytic enzymes can provide a useful in vitro model system for developing and testing potential new treatments of disc degeneration, such as injectable implants or biological therapies

    Selection of reference genes for normalization of quantitative real-time PCR in organ culture of the rat and rabbit intervertebral disc

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The accuracy of quantitative real-time RT-PCR (qRT-PCR) is often influenced by experimental artifacts, resulting in erroneous expression profiles of target genes. The practice of employing normalization using a reference gene significantly improves reliability and its applicability to molecular biology. However, selection of an ideal reference gene(s) is of critical importance to discern meaningful results. The aim of this study was to evaluate the stability of seven potential reference genes (Actb, GAPDH, 18S rRNA, CycA, Hprt1, Ywhaz, and Pgk1) and identify most stable gene(s) for application in tissue culture research using the rat and rabbit intervertebral disc (IVD).</p> <p>Findings</p> <p><it>In vitro</it>, four genes (Hprt1, CycA, GAPDH, and 18S rRNA) in rat IVD tissue and five genes (CycA, Hprt1, Actb, Pgk1, and Ywhaz) in rabbit IVD tissue were determined as most stable for up to 14 days in culture. Pair-wise variation analysis indicated that combination of Hprt1 and CycA in rat and the combination of Hprt1, CycA, and Actb in rabbit may most stable reference gene candidates for IVD tissue culture.</p> <p>Conclusions</p> <p>Our results indicate that Hprt1 and CycA are the most stable reference gene candidates for rat and rabbit IVD culture studies. In rabbit IVD, Actb could be an additional gene employed in conjunction with Hprt1 and CycA. Selection of optimal reference gene candidate(s) should be a pertinent exercise before employment of PCR outcome measures for biomedical research.</p

    Enzymatically crosslinked Tyramine-Gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint synovial inflammation, as well as cartilage and bone tissue destruction. Current strategies for the treatment of RA can reduce joint inflammation, but the treatment options still represent stability concerns since they are not sufficient and present a fast clearing. Thus, several drug delivery systems (DDS) have been advanced to tackle this limitation. Injectable gellan gum (GG) hydrogels, reduced by physical crosslinking methods, also being proposed as DDS, but this kind of crosslinking can produce hydrogels that become weaker in physiological conditions. Nevertheless, enzymatic crosslinking emerged as an alternative to increase mechanical strength, which can be adjusted by the degree of enzymatic crosslinking. In this study, tyramine-modified gellan gum (Ty-GG) hydrogels were developed via horseradish peroxidase (HRP) crosslinking; and betamethasone was encapsulated within, to increase the specificity and safety in the treatment of patients with RA. Physicochemical results showed that it was possible to modify GG with tyramine, with a degree of substitution of approximately 30%. They showed high mechanical strength and resistance, presenting a controlled betamethasone release profile over time. Ty-GG hydrogels also exhibited no cytotoxic effects and do not negatively affected the metabolic activity and proliferation of chondrogenic primary cells. Furthermore, the main goal was achieved since betamethasone-loaded Ty-GG hydrogels demonstrated to have a more effective therapeutic effect when compared with the administration of betamethasone alone. Therefore, the developed Ty-GG hydrogels represent a promising DDS and a reliable alternative to traditional treatments in patients with RANorte2020 project (“NORTE-08-5369-FSE-000044”), REMIX project (G.A. 778078 — REMIX — H2020-MSCA-RISE-2017), and Gilson Lab, Chonbuk National University, Republic of Korea. The FCT distinction attributed to J. Miguel Oliveira under the Investigator FCT program (IF/01285/2015) is also greatly acknowledged. C. Gonçalves also wish to acknowledge FCT for supporting her research (No. SFRH/BPD/94277/2013

    Grb2 depletion under non-stimulated conditions inhibits PTEN, promotes Akt-induced tumor formation and contributes to poor prognosis in ovarian cancer

    Get PDF
    In the absence of extracellular stimulation the adaptor protein growth factor receptor-bound protein (Grb2) and the phospholipase Plcγ1 compete for the same binding site on fibroblast growth factor receptor 2 (FGFR2). Reducing cellular Grb2 results in upregulation of Plcγ1 and depletion of the phospholipid PI(4,5)P2. The functional consequences of this event on signaling pathways are unknown. We show that the decrease in PI(4,5)P2 level under non-stimulated conditions inhibits PTEN activity leading to the aberrant activation of the oncoprotein Akt. This results in excessive cell proliferation and tumor progression in a xenograft mouse model. As well as defining a novel mechanism of Akt phosphorylation with important therapeutic consequences, we also demonstrate that differential expression levels of FGFR2, Plcγ1 and Grb2 correlate with patient survival. Oncogenesis through fluctuation in the expression levels of these proteins negates extracellular stimulation or mutation and defines them as novel prognostic markers in ovarian cancer

    Differential properties of human ACL and MCL stem cells may be responsible for their differential healing capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human anterior cruciate ligament (hACL) and medial collateral ligament (hMCL) of the knee joint are frequently injured, especially in athletic settings. It has been known that, while injuries to the MCL typically heal with conservative treatment, ACL injuries usually do not heal. As adult stem cells repair injured tissues through proliferation and differentiation, we hypothesized that the hACL and hMCL contain stem cells exhibiting unique properties that could be responsible for the differential healing capacity of the two ligaments.</p> <p>Methods</p> <p>To test the above hypothesis, we derived ligament stem cells from normal hACL and hMCL samples from the same adult donors using tissue culture techniques and characterized their properties using immunocytochemistry, RT-PCR, and flow cytometry.</p> <p>Results</p> <p>We found that both hACL stem cells (hACL-SCs) and hMCL stem cells (hMCL-SCs) formed colonies in culture and expressed stem cell markers nucleostemin and stage-specific embryonic antigen-4 (SSEA-4). Moreover, both hACL-SCs and hMCL-SCs expressed CD surface markers for mesenchymal stem cells, including CD44 and CD90, but not those markers for vascular cells, CD31, CD34, CD45, and CD146. However, hACL-SCs differed from hMCL-SCs in that the size and number of hACL-SC colonies in culture were much smaller and grew more slowly than hMCL-SC colonies. Moreover, fewer hACL-SCs in cell colonies expressed stem cell markers STRO-1 and octamer-binding transcription factor-4 (Oct-4) than hMCL-SCs. Finally, hACL-SCs had less multi-differentiation potential than hMCL-SCs, evidenced by differing extents of adipogenesis, chondrogenesis, and osteogenesis in the respective induction media.</p> <p>Conclusions</p> <p>This study shows for the first time that hACL-SCs are intrinsically different from hMCL-SCs. We suggest that the differences in their properties contribute to the known disparity in healing capabilities between the two ligaments.</p

    Characteristics of Stem Cells Derived from the Degenerated Human Intervertebral Disc Cartilage Endplate

    Get PDF
    Mesenchymal stem cells (MSCs) derived from adult tissues are an important candidate for cell-based therapies and regenerative medicine due to their multipotential differentiation capability. MSCs have been identified in many adult tissues but have not reported in the human intervertebral disc cartilage endplate (CEP). The initial purpose of this study was to determine whether MSCs exist in the degenerated human CEP. Next, the morphology, proliferation capacity, cell cycle, cell surface epitope profile and differentiation capacity of these CEP-derived stem cells (CESCs) were compared with bone-marrow MSCs (BM-MSCs). Lastly, whether CESCs are a suitable candidate for BM-MSCs was evaluated. Isolated cells from degenerated human CEP were seeded in an agarose suspension culture system to screen the proliferative cell clusters. Cell clusters were chosen and expanded in vitro and were compared with BM-MSCs derived from the same patient. The morphology, proliferation rate, cell cycle, immunophenotype and stem cell gene expression of the CESCs were similar to BM-MSCs. In addition, the CESCs could be induced into osteoblasts, adipocytes, chondrocytes, and are superior to BM-MSCs in terms of osteogenesis and chondrogenesis. This study is first to demonstrate the presence of stem cells in the human degenerated CEP. These results may improve our understanding of intervertebral disc (IVD) pathophysiology and the degeneration process, and could provide cell candidates for cell-based regenerative medicine and tissue engineering

    An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration

    Get PDF
    Cell-based regenerative medicine therapies have been proposed for repairing the degenerated intervertebral disc (a major cause of back pain). However, for this approach to be successful, it is essential to characterise the phenotype of its native cells to guarantee that implanted cells differentiate and maintain the correct phenotype to ensure appropriate cell and tissue function. While recent studies have increased our knowledge of the human nucleus pulposus (NP) cell phenotype, their ontogeny is still unclear. The expression of notochordal markers by a subpopulation of adult NP cells suggests that, contrary to previous reports, notochord-derived cells are retained in the adult NP, possibly coexisting with a second population of cells originating from the annulus fibrosus or endplate. It is not known, however, how these two cell populations interact and their specific role(s) in disc homeostasis and disease. In particular, notochordal cells are proposed to display both anabolic and protective roles; therefore, they may be the ideal cells to repair the degenerate disc. Thus, understanding the ontogeny of the adult NP cells is paramount, as it will inform the medical and scientific communities as to the ideal phenotype to implant into the degenerate disc and the specific pathways involved in stem cell differentiation towards such a phenotype. © 2014 The Author(s)

    Simulated-Physiological Loading Conditions Preserve Biological and Mechanical Properties of Caprine Lumbar Intervertebral Discs in Ex Vivo Culture

    Get PDF
    Low-back pain (LBP) is a common medical complaint and associated with high societal costs. Degeneration of the intervertebral disc (IVD) is assumed to be an important causal factor of LBP. IVDs are continuously mechanically loaded and both positive and negative effects have been attributed to different loading conditions
    corecore