15 research outputs found
β1 integrin-extracellular matrix interactions are essential for maintaining exocrine pancreas architecture and function
Integrin receptors are responsible for integrating extracellular matrix signals inside the cell. The most prominent integrin receptor, β1 integrin, has a role in cell function, survival and differentiation. Recently, we demonstrated a profound in vivo role of β1 integrin expression in the pancreas on glucose homeostasis and islet function. Here, we extend these results by examining the role of β1 integrin in exocrine pancreatic structure and function. Adult C57Bl/6 mice hemizygous for a collagen type Iα2 (Col1a2) promoter-controlled tamoxifen-inducible Cre recombinase gene and homozygous for loxP-β1 integrin were injected with tamoxifen or corn oil to generate mice deleted or not for β1 integrin. Pancreata derived from these male mice were analyzed by quantitative reverse transcriptase-polymerase chain reaction, western blot and immunofluorescence. Our results showed that β1 integrin-deficient mice displayed a significant decrease in pancreas weight with a significant reduction of amylase, regenerating islet-derived protein II and carboxypeptidase-A expression (P\u3c0.05-0.01). Compared with control pancreata, β1 integrin-deficient pancreata showed reduced mRNA expression of extracellular matrix (collagen type Iα2, fibronectin and laminin) genes (P\u3c0.05), detached acini clusters and lost focal adhesion structure. Moreover, β1 integrin-deficient pancreatic acinar cells displayed decreased proliferation (P\u3c0.05) and increased apoptosis (P\u3c0.001). Apoptosis was reduced to that of controls when isolated exocrine clusters were cultured in media supplemented with extracellular matrix proteins. Taken together, these results implicate β1 integrin as an essential component for maintaining exocrine pancreatic structure and function. © 2013 USCAP, Inc All rights reserved
Recommended from our members
Knockdown of Ant2 Reduces Adipocyte Hypoxia And Improves Insulin Resistance in Obesity.
Decreased adipose tissue oxygen tension and increased HIF-1α expression can trigger adipose tissue inflammation and dysfunction in obesity. Our current understanding of obesity-associated decreased adipose tissue oxygen tension is mainly focused on changes in oxygen supply and angiogenesis. Here, we demonstrate that increased adipocyte O2 demand, mediated by ANT2 activity, is the dominant cause of adipocyte hypoxia. Deletion of adipocyte Ant2 improves obesity-induced intracellular adipocyte hypoxia by decreasing obesity-induced adipocyte oxygen demand, without effects on mitochondrial number or mass, or oligomycin-sensitive respiration. This led to decreased adipose tissue HIF-1α expression and inflammation with improved glucose tolerance and insulin resistance in both a preventative or therapeutic setting. Our results suggest that ANT2 may be a target for the development of insulin sensitizing drugs and that ANT2 inhibition might have clinical utility
Recommended from our members
Microbiota-Produced N-Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance.
The composition of the gastrointestinal microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine, are elevated in high-fat diet-induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon-like peptide 1. Obese Fpr1 knockout mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. Overall, we describe a new mechanism by which the gut microbiota can modulate glucose metabolism, providing a potential approach for the treatment of metabolic disease
Ultrastructural and immunohistochemical analysis of the 8-20 week human fetal pancreas
Development of the human pancreas is well-known to involve tightly controlled differentiation of pancreatic precursors to mature cells that express endocrine- or exocrine-specific protein products. However, details of human pancreatic development at the ultrastructural level are limited. The present study analyzed 8–20 week fetal age human pancreata using scanning and transmission electron microscopy (TEM), TEM immunogold and double or triple immunofluorescence staining. Primary organization of islets and acini occurred during the developmental period examined. Differentiating endocrine and exocrine cells developed from the ductal tubules and subsequently formed isolated small clusters. Extracellular matrix fibers and proteins accumulated around newly differentiated cells during their migration and cluster formation. Glycogen expression was robust in ductal cells of the pancreas from 8–15 weeks of fetal age; however, this became markedly reduced at 20 weeks, with a concomitant increase in acinar cell glycogen content. Insulin secretory granules transformed from being dense and round at 8 weeks to distinct geometric (multilobular, crystalline) structures by 14–20 weeks. Initially many of the differentiating endocrine cells were multihormonal and contained polyhormonal granules; by 20 weeks, monohormonal cells were in the majority. Interestingly, certain secretory granules in the early human fetal pancreatic cells showed positivity for both exocrine (amylase) and endocrine proteins. This combined ultrastructural and immunohistochemical study showed that, during early developmental stages, the human pancreas contains differentiating epithelial cells that associate closely with the extracellular matrix, have dynamic glycogen expression patterns and contain polyhormonal as well as mixed endocrine/exocrine granules
Recommended from our members
TAZ Is a Negative Regulator of PPARγ Activity in Adipocytes and TAZ Deletion Improves Insulin Sensitivity and Glucose Tolerance
Insulin resistance is a major factor in obesity-linked type 2 diabetes. PPARγ is a master regulator of adipogenesis, and small molecule agonists, termed thiazolidinediones, are potent therapeutic insulin sensitizers. Here, we studied the role of transcriptional co-activator with PDZ-binding motif (TAZ) as a transcriptional co-repressor of PPARγ. We found that adipocyte-specific TAZ knockout (TAZ AKO) mice demonstrate a constitutively active PPARγ state. Obese TAZ AKO mice show improved glucose tolerance and insulin sensitivity compared to littermate controls. PPARγ response genes are upregulated in adipose tissue from TAZ AKO mice and adipose tissue inflammation was also decreased. In vitro and in vivo mechanistic studies revealed that the TAZ-PPARγ interaction is partially dependent on ERK-mediated Ser112 PPARγ phosphorylation. As adipocyte PPARγ Ser112 phosphorylation is increased in obesity, repression of PPARγ activity by TAZ could contribute to insulin resistance. These results identify TAZ as a new factor in the development of obesity-induced insulin resistance
Recommended from our members
Knockdown of Ant2 Reduces Adipocyte Hypoxia And Improves Insulin Resistance in Obesity.
Decreased adipose tissue oxygen tension and increased HIF-1α expression can trigger adipose tissue inflammation and dysfunction in obesity. Our current understanding of obesity-associated decreased adipose tissue oxygen tension is mainly focused on changes in oxygen supply and angiogenesis. Here, we demonstrate that increased adipocyte O2 demand, mediated by ANT2 activity, is the dominant cause of adipocyte hypoxia. Deletion of adipocyte Ant2 improves obesity-induced intracellular adipocyte hypoxia by decreasing obesity-induced adipocyte oxygen demand, without effects on mitochondrial number or mass, or oligomycin-sensitive respiration. This led to decreased adipose tissue HIF-1α expression and inflammation with improved glucose tolerance and insulin resistance in both a preventative or therapeutic setting. Our results suggest that ANT2 may be a target for the development of insulin sensitizing drugs and that ANT2 inhibition might have clinical utility
Recommended from our members
Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting β Cell Proliferation and Function in Obesity
The nature of obesity-associated islet inflammation and its impact on β cell abnormalities remains poorly defined. Here, we explore immune cell components of islet inflammation and define their roles in regulating β cell function and proliferation. Islet inflammation in obese mice is dominated by macrophages. We identify two islet-resident macrophage populations, characterized by their anatomical distributions, distinct phenotypes, and functional properties. Obesity induces the local expansion of resident intra-islet macrophages, independent of recruitment from circulating monocytes. Functionally, intra-islet macrophages impair β cell function in a cell-cell contact-dependent manner. Increased engulfment of β cell insulin secretory granules by intra-islet macrophages in obese mice may contribute to restricting insulin secretion. In contrast, both intra- and peri-islet macrophage populations from obese mice promote β cell proliferation in a PDGFR signaling-dependent manner. Together, these data define distinct roles and mechanisms for islet macrophages in the regulation of islet β cells
Fibrin supports human fetal islet-epithelial cell differentiation via p70s6k and promotes vascular formation during transplantation
The human fetal pancreas expresses a variety of extracellular matrix (ECM) binding receptors known as integrins. A provisional ECM protein found in blood clots that can bind to integrin receptors and promote β cell function and survival is fibrin. However, its role in support of human fetal pancreatic cells is unknown. We investigated how fibrin promotes human fetal pancreatic cell differentiation in vitro and in vivo. Human fetal pancreata were collected from 15 to 21 weeks of gestation and collagenase digested. Cells were then plated on tissue-culture polystyrene, or with 2D or 3D fibrin gels up to 2 weeks, or subcutaneously transplanted in 3D fibrin gels. The human fetal pancreas contained rich ECM proteins and expressed integrin αVβ3. Fibrin-cultured human fetal pancreatic cells had significantly increased expression of PDX-1, glucagon, insulin, and VEGF-A, along with increased integrin αVβ3 and phosphorylated FAK and p70 s6k. Fibrin-cultured cells treated with rapamycin, the mTOR pathway inhibitor, had significantly decreased phospho-p70 s6k and PDX-1 expression. Transplanting fibrin-mixed cells into nude mice improved vascularization compared with collagen controls. These results suggest that fibrin supports islet cell differentiation via p70 s6k and promotes vascularization in human fetal islet-epithelial clusters in vivo