376 research outputs found

    Efficient method for estimating the number of communities in a network

    Full text link
    While there exist a wide range of effective methods for community detection in networks, most of them require one to know in advance how many communities one is looking for. Here we present a method for estimating the number of communities in a network using a combination of Bayesian inference with a novel prior and an efficient Monte Carlo sampling scheme. We test the method extensively on both real and computer-generated networks, showing that it performs accurately and consistently, even in cases where groups are widely varying in size or structure.Comment: 13 pages, 4 figure

    Many cusped hyperbolic 3-manifolds do not bound geometrically

    Get PDF
    In this note we show that there exist cusped hyperbolic 3-mani-folds that embed geodesically but cannot bound geometrically. Thus, being a geometric boundary is a non-trivial property for such manifolds. Our result complements the work by Long and Reid on geometric boundaries of compact hyperbolic 4-manifolds and by Kolpakov, Reid, and Slavich on embedding arithmetic hyperbolic manifolds

    Case report: De novo mutation of a-galactosidase A in a female patient with end-stage renal disease: report of a case of late diagnosis of Anderson–Fabry disease

    Get PDF
    Background: Anderson-Fabry disease (AFD) is an X-linked disease that results from reduced activity of the enzyme galactosidase alpha (GLA). When the GLA gene sequence is altered by mutations that alter the normal DNA sequence, variants of the alpha-galactosidase A enzyme are produced, which may or may not function. These mutations are responsible for Fabry disease, and to date, over 800 different mutations of the gene have been described in patients with Anderson-Fabry disease. In this case, we report the case of a woman who is the sole family member with this type of mutation.Case presentation: We report a case of a 52-year-old woman with end-stage chronic kidney disease in dialysis treatment. The patient's alpha-galactosidase activity was 6.6 nmol/ml/h in whole blood, and lyso-GB3 levels were 11.45 nmol/L (normal range < 2.3 nmol/L). Alpha-galactosidase A gene sequence analysis revealed a pathogenic variant of c.947dupT in exon 6, leading to the p. I317NfsTer16 amino acid substitution. The genetic analysis did not detect the same mutation in any of the other screened family members.Conclusion: The international Fabry disease genotype-phenotype database (dbFGP) reports a pathogenic variant c.947dupT in exon 6 that is probably associated with a classical phenotype of Fabry disease. In this case report, we report the case of a woman who is the sole family member with this type of pathogenic variant. Similar situations have not been described in the literature for this pathogenic variant, and it represents an important case of inter- and intrafamilial variability in patients with Fabry disease. The literature shows that de novo pathogenic variants are frequently found in the context of Fabry disease

    The Role of Biomarkers, Metabolomics, and COVID-19 in Venous Thromboembolism—A Review of Literature

    Get PDF
    In recent years, the field of venous thromboembolism has undergone numerous innovations, starting from the recent discoveries on the role of biomarkers, passing through the role of metabolomics in expanding our knowledge on pathogenic mechanisms, which have opened up new therapeutic targets. A variety of studies have contributed to characterizing the metabolic phenotype that occurs in venous thromboembolism, identifying numerous pathways that are altered in this setting. Among these pathways are the metabolism of carnitine, tryptophan, purine, and fatty acids. Furthermore, new evidence has emerged with the recent COVID-19 pandemic. Hypercoagulability phenomena induced by this viral infection appear to be related to altered von Willebrand factor activity, alteration of the renin-angiotensin-aldosterone system, and dysregulation of both innate and adaptive immunity. This is the first literature review that brings together the most recent evidence regarding biomarkers, metabolomics, and COVID-19 in the field of venous thromboembolism, while also mentioning current therapeutic protocols

    Labelling and clinical performance of human leukocytes labelled with 99m Tc-HMPAO using leukokit® with gelofusine versus leukokit® with HES as sedimentation agent

    Get PDF
    The scintigraphy with radiolabelled autologous leukocytes (WBCs) is considered the gold-standard technique for imaging infections. Leukokit (R) is a commercially available, disposable, sterile kit for labelling WBCs ex vivo. In this kit, WBCs isolation from red blood cells (RBCs) was performed using poly(O-2-hydroxyethyl)starch (HES) as the RBCs sedimentation agent. Due to its poor availability, HES has been recently replaced by Gelofusine as the RBC sedimentation agent. The aim of this study was to compare the labelling efficiency and the diagnostic accuracy of WBCs labelled with Leukokit (R) with HES vs Leukokit (R) with Gelofusine. WBCs were isolated using HES or Gelofusine for 45minutes and then purified from platelets (PLTs) and labelled with 1.1 +/- 0.3 GBq of freshly prepared Tc-99m- HMPAO. The following parameters were evaluated: the number and type of recovered WBCs, RBCs contamination, PLTs contamination, vitality of neutrophils, and chemotactic properties of neutrophils. Clinical comparison was performed between 80 patients (33 males; age 67.5 +/- 14.2) injected with Tc-99m-HMPAO-WBCs, using HES as the sedimentation agent, and 92 patients (38 males; age 68.2 +/- 12.8) injected with Tc-99m-HMPAO-WBCs using Gelofusine as the sedimentation agent. Patients were affected by prosthetic joint infections, peripheral bone osteomyelitis, or vascular graft infection. We compared radiolabelling efficiency (LE), final recovery yield (RY), and diagnostic outcome based on microbiology or 2-year follow-up. Results showed that HES provides the lowest RBCs and PLTs contamination, but Gelofusine provides the highest WBC recovery. Both agents did not influence the chemotactic properties of WBCs, and no differences were found in terms of LE and RY. Sensitivity, specificity, and accuracy were also not significantly different for WBCs labelled with both agents (diagnostic accuracy 90.9%, CI = 74.9-96.1 vs 98.3%, CI = 90.8-100, for HES and Gelofusine, respectively). In conclusion, Gelofusine can be considered a suitable alternative of HES for WBCs separation and labelling

    Pathogenesis and molecular mechanisms of anderson–fabry disease and possible new molecular addressed therapeutic strategies

    Get PDF
    Anderson–Fabry disease (AFD) is a rare disease with an incidenceof approxi-mately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises cell signaling pathways. Deposition of sphingolipids occurs in the autonomic nervous system, dorsal root ganglia, kidney epithelial cells, vascular system cells, and myocardial cells, resulting in organ failure. This manuscript will review the molecular pathogenetic pathways involved in Anderson–Fabry disease and in its organ damage. Some studies reported that inhibition of mitochondrial function and energy metabolism plays a signif-icant role in AFD cardiomyopathy and in kidney disease of AFD patients. Furthermore, mitochondrial dysfunction has been reported as linked to the dysregulation of the au-tophagy–lysosomal pathway which inhibits the mechanistic target of rapamycin kinase (mTOR) mediated control of mitochondrial metabolism in AFD cells. Cerebrovascular complications due to AFD are caused by cerebral micro vessel stenosis. These are caused by wall thickening resulting from the intramural accumulation of glycolipids, luminal oc-clusion or thrombosis. Other pathogenetic mechanisms involved in organ damage linked to Gb3 accumulation are endocytosis and lysosomal degradation of endothelial calcium-activated intermediate-conductance potassium ion channel 3.1 (KCa3.1) via a clathrin-de-pendent process. This process represents a crucial event in endothelial dysfunction. Several studies have identified the deacylated form of Gb3, globotriaosylsphingosine (Lyso-Gb3), as the main catabolite that increases in plasma and urine in patients with AFD. The mean concentrations of Gb3 in all organs and plasma of Galactosidase A knockout mice were significantly higher than those of wild-type mice. The distributions of Gb3 isoforms vary from organ to organ. Various Gb3 isoforms were observed mainly in the kidneys, and kidney-specific Gb3 isoforms were hydroxylated. Furthermore, the action of Gb3 on the KCa3.1 channel suggests a possible contribution of this interaction to the Fabry disease process, as this channel is expressed in various cells, including endothelial cells, fibro-blasts, smooth muscle cells in proliferation, microglia, and lymphocytes. These molecular pathways could be considered a potential therapeutic target to correct the enzyme in ad-dition to the traditional enzyme replacement therapies (ERT) or drug chaperone therapy

    Molecular Pathogenesis of Central and Peripheral Nervous System Complications in Anderson–Fabry Disease

    Get PDF
    Fabry disease (FD) is a recessive monogenic disease linked to chromosome X due to more than two hundred mutations in the alfa-galactosidase A (GLA) gene. Modifications of the GLA gene may cause the progressive accumulation of globotriaosylceramide (Gb3) and its deacylated form, globotriasylsphingosine (lyso-Gb3), in lysosomes of several types of cells of the heart, kidneys, skin, eyes, peripheral and central nervous system (not clearly and fully demonstrated), and gut with different and pleiotropic clinical symptoms. Among the main symptoms are acroparesthesias and pain crisis (involving the peripheral nervous system), hypohidrosis, abdominal pain, gut motility abnormalities (involving the autonomic system), and finally, cerebrovascular ischemic events due to macrovascular involvement (TIA and stroke) and lacunar strokes and white matter abnormalities due to a small vessel disease (SVS). Gb3 lysosomal accumulation causes cytoplasmatic disruption and subsequent cell death. Additional consequences of Gb3 deposits are inflammatory processes, abnormalities of leukocyte function, and impaired trafficking of some types of immune cells, including lymphocytes, monocytes, CD8+ cells, B cells, and dendritic cells. The involvement of inflammation in AFD pathogenesis conflicts with the reported poor correlation between CRP levels as an inflammation marker and clinical scores such as the Mainz Severity Score Index (MSSI). Also, some authors have suggested an autoimmune reaction is involved in the disease's pathogenetic mechanism after the alpha-galactosidase A deficiency. Some studies have reported a high degree of neuronal apoptosis inhibiting protein as a critical anti-apoptotic mediator in children with Fabry disease compared to healthy controls. Notably, this apoptotic upregulation did not change after treatment with enzymatic replacement therapy (ERT), with a further upregulation of the apoptosis-inducing factor after ERT started. Gb3-accumulation has been reported to increase the degree of oxidative stress indexes and the production of reactive oxygen species (ROS). Lipids and proteins have been reported as oxidized and not functioning. Thus, neurological complications are linked to different pathogenetic molecular mechanisms. Progressive accumulation of Gb3 represents a possible pathogenetic event of peripheral nerve involvement. In contrast, central nervous system participation in the clinical setting of cerebrovascular ischemic events seems to be due to the epitheliopathy of Anderson-Fabry disease with lacunar lesions and white matter hyperintensities (WMHs). In this review manuscript, we revised molecular mechanisms of peripheral and central neurological complications of Anderson-Fabry Disease. The management of Fabry disease may be improved by the identification of biomarkers that reflect the clinical course, severity, and progression of the disease. Intensive research on biomarkers has been conducted over the years to detect novel markers that may potentially be used in clinical practice as a screening tool, in the context of the diagnostic process and as an indicator of response to treatment. Recent proteomic or metabolomic studies are in progress, investigating plasma proteome profiles in Fabry patients: these assessments may be useful to characterize the molecular pathology of the disease, improve the diagnostic process, and monitor the response to treatment

    Common Variable Immunodeficiency and Autoimmune Diseases: A Retrospective Study of 95 Adult Patients in a Single Tertiary Care Center

    Get PDF
    Common variable immunodeficiency (CVID) is the most common clinically significant primary immunodeficiency in adulthood, which presents a broad spectrum of clinical manifestations, often including non-infectious complications in addition to heightened susceptibility to infections. These protean manifestations may significantly complicate the differential diagnosis resulting in diagnostic delay and under-treatment with increased mortality and morbidity. Autoimmunity occurs in up to 30% of CVID patients, and it is an emerging cause of morbidity and mortality in this type of patients. 95 patients (42 males and 53 females) diagnosed with CVID, basing on ESID diagnostic criteria, were enrolled in this retrospective cohort study. Clinical phenotypes were established according to Chapel 2012: i) no other disease-related complications, ii) cytopenias (thrombocytopenia/autoimmune hemolytic anemia/neutropenia), iii) polyclonal lymphoproliferation (granuloma/lymphoid interstitial pneumonitis/persistent unexplained lymphadenopathy), and iv) unexplained persistent enteropathy. Clinical items in the analysis were age, gender, and clinical features. Laboratory data included immunoglobulin (Ig)G, IgM and IgA levels at diagnosis, flow-cytometric analysis of peripheral lymphocytes (CD3+, CD3+CD4+, CD3+CD8+, CD19+, CD4+CD25highCD127low, CD19hiCD21loCD38lo, and follicular T helper cell counts). Comparisons of continuous variables between groups were performed with unpaired t-test, when applicable. 39 patients (41%) showed autoimmune complications. Among them, there were 21 females (53.8%) and 18 males (46.2%). The most prevalent autoimmune manifestations were cytopenias (17.8%), followed by arthritis (11.5%), psoriasis (9.4%), and vitiligo (6.3%). The most common cytopenia was immune thrombocytopenia, reported in 10 out of 95 patients (10.5%), followed by autoimmune hemolytic anemia (n=3, 3.1%) and autoimmune neutropenia (n=3, 3.1%). Other autoimmune complications included thyroiditis, coeliac disease, erythema nodosum, Raynaud’s phenomenon, alopecia, recurring oral ulcers, autoimmune gastritis, and primary biliary cholangitis. There were no statistically significant differences comparing immunoglobulin levels between CVID patients with or without autoimmune manifestations. There was no statistical difference in CD3+, CD8+, CD4+CD25highCD127low T, CD19, CD19hiCD21loCD38lo, and follicular T helper cell counts in CVID patients with or without autoimmune disorders. In conclusion, autoimmune manifestations often affect patients with CVID. Early recognition and tailored treatment of these conditions are pivotal to ensure a better quality of life and the reduction of CVID associated complications
    • …
    corecore