123 research outputs found

    FYN is overexpressed in human prostate cancer

    Full text link
    To test the hypothesis that FYN , a member of the SRC family of kinases (SFKs), is up-regulated in prostate cancer, as FYN is functionally distinct from other SFKs, and interacts with FAK and paxillin (PXN), regulators of cell morphology and motility. MATERIALS AND METHODS Through data-mining in Oncomine ( http://www.oncomine.org ), cell-line profiling with immunoblotting, quantitative reverse transcription and polymerase chain reaction (RT-PCR) and immunohistochemical analysis, we described FYN expression in prostate cancer. The analysis included 32 cases of prostate cancer, nine of prostatic intraepithelial neoplasia (PIN) and 19 normal prostates. Samples were scored for the percentage of stained glands and intensity of staining (from 0 to 3). Each sample was assigned a composite score generated by multiplying percentage and intensity. RESULTS Data-mining showed an eight times greater FYN expression in prostate cancer than in normal tissue; this was specific to FYN and not present for other SFKs. Expression of FYN in prostate cancer cell lines (LNCaP, 22Rv1, PC3, DuPro) was detected using quantitative RT-PCR and immunoblotting. Expression of FYN and its signalling partners FAK and PXN was detected in human tissue. Comparing normal with cancer samples, there was a 2.1-fold increase in median composite score for FYN ( P  < 0.001) 1.7-fold increase in FAK ( P  < 0.001), and a doubling in PXN ( P  < 0.05). There was a 1.7-fold increase in FYN ( P  < 0.05) and a 1.6-fold increase in FAK ( P  < 0.01) in cancer compared with PIN. CONCLUSIONS These studies support the hypothesis that FYN and its related signalling partners are up-regulated in prostate cancer, and support further investigation into the role of the FYN as a therapeutic target.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71987/1/j.1464-410X.2008.08009.x.pd

    Metastasis Suppressors and the Tumor Microenvironment

    Get PDF
    The most dangerous attribute of cancer cells is their ability to metastasize. Throughout the process of metastasis, tumor cells interact with other tumor cells, host cells and extracellular molecules. This brief review explores how a new class of molecules – metastasis suppressors – regulate tumor cell–microenvironmental interactions. Data are presented which demonstrate that metastasis suppressors act at multiple steps of the metastatic cascade. A brief discussion for how metastasis suppressor regulation of cellular interactions might be exploited is presented

    Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemosensory signal transduction guides the behavior of many insects, including <it>Anopheles gambiae</it>, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to compare transcript expression profiles between the two major chemosensory tissues, the antennae and maxillary palps, of adult female and male <it>An. gambiae</it>.</p> <p>Results</p> <p>We compared chemosensory tissue transcriptomes to whole body transcriptomes of each sex to identify chemosensory enhanced genes. In the six data sets analyzed, we detected expression of nearly all known chemosensory genes and found them to be highly enriched in both olfactory tissues of males and females. While the maxillary palps of both sexes demonstrated strict chemosensory gene expression overlap, we observed acute differences in sensory specialization between male and female antennae. The relatively high expression levels of chemosensory genes in the female antennae reveal its role as an organ predominately assigned to chemosensation. Remarkably, the expression of these genes was highly conserved in the male antennae, but at much lower relative levels. Alternatively, consistent with a role in mating, the male antennae displayed significant enhancement of genes involved in audition, while the female enhancement of these genes was observed, but to a lesser degree.</p> <p>Conclusions</p> <p>These findings suggest that the chemoreceptive spectrum, as defined by gene expression profiles, is largely similar in female and male <it>An. gambiae</it>. However, assuming sensory receptor expression levels are correlated with sensitivity in each case, we posit that male and female antennae are perceptive to the same stimuli, but possess inverse receptive prioritizations and sensitivities. Here we have demonstrated the use of RNA-seq to characterize the sensory specializations of an important disease vector and grounded future studies investigating chemosensory processes.</p

    Oak canopy arthropod communities: which factors shape its structure?

    Full text link

    Look Up

    No full text
    https://digitalcommons.library.umaine.edu/mmb-vp-copyright/5861/thumbnail.jp

    Boomerang!

    No full text
    https://digitalcommons.library.umaine.edu/mmb-vp-copyright/7257/thumbnail.jp
    corecore