3 research outputs found

    1H-MRS neurometabolite profiles and motor development in school-aged children who are HIV-exposed uninfected: a birth cohort study

    Get PDF
    ObjectiveAlterations in regional neurometabolite levels as well as impaired neurodevelopmental outcomes have previously been observed in children who are HIV-exposed uninfected (CHEU). However, little is known about how neurometabolite profiles may relate to their developmental impairment. This study aimed to compare neurometabolite concentrations in school-aged CHEU and children who are HIV-unexposed (CHU) and to explore associations of neurometabolite profiles with functional neurodevelopment in the context of perinatal HIV exposure.MethodsWe used 3 T single voxel proton magnetic resonance spectroscopy (1H-MRS) to quantify absolute and relative neurometabolites in the parietal gray and parietal white matter in school-aged CHEU and aged- and community-matched CHU. Functional neurodevelopmental outcomes were assessed using the early learning outcome measure (ELOM) tool at 6 years of age.ResultsOur study included 152 school-aged children (50% males), 110 CHEU and 42 CHU, with an average age of 74 months at the neuroimaging visit. In an adjusted multiple linear regression analysis, significantly lower glutamate (Glu) concentrations were found in CHEU as compared to CHU in the parietal gray matter (absolute Glu, p = 0.046; Glu/total creatine (Cr+PCr) ratios, p = 0.035) and lower total choline to creatine ratios (GPC+PCh/Cr+PCr) in the parietal white matter (p = 0.039). Using factor analysis and adjusted logistic regression analysis, a parietal gray matter Glu and myo-inositol (Ins) dominated factor was associated with HIV exposure status in both unadjusted (OR 0.55, 95% CI 0.17–0.45, p = 0.013) and adjusted analyses (OR 0.59, 95% CI 0.35–0.94, p = 0.031). With Ins as one of the dominating metabolites, this neurometabolic factor was similar to that found at the age of two years. Furthermore, this factor was also found to be correlated with ELOM scores of gross motor development in CHEU (Pearson’s r = −0.48, p = 0.044). In addition, in CHEU, there was a significant association between Ins/Cr+PCr ratios in the parietal white matter and ELOM scores of fine motor coordination and visual motor integration in CHEU (Pearson’s r = 0.51, p = 0.032).ConclusionReduced Glu concentrations in the parietal gray matter may suggest regional alterations in excitatory glutamatergic transmission pathways in the context of perinatal HIV and/or antiretroviral therapy (ART) exposure, while reduced Cho ratios in the parietal white matter suggest regional myelin loss. Identified associations between neurometabolite profiles and gross and fine motor developmental outcomes in CHEU are suggestive of a neurometabolic mechanism that may underlie impaired motor neurodevelopmental outcomes observed in CHEU

    Association of Maternal and Child Anemia With Brain Structure in Early Life in South Africa.

    Get PDF
    IMPORTANCE: Anemia affects millions of pregnant women and their children worldwide, particularly in low- and middle-income countries. Although anemia in pregnancy is a well-described risk factor for cognitive development, the association with child brain structure is poorly understood. OBJECTIVE: To explore the association of anemia during pregnancy and postnatal child anemia with brain structure in early life. DESIGN, SETTING, AND PARTICIPANTS: This neuroimaging nested cohort study was embedded within the Drakenstein Child Health Study (DCHS), a population-based birth cohort in South Africa. Pregnant individuals were enrolled into the DCHS between 2012 and 2015 from 2 clinics in a periurban setting. Mother-child pairs were assessed prospectively; follow-up is ongoing. A subgroup of children had brain magnetic resonance imaging (MRI) at age 2 to 3 years from 2015 to 2018. This study focused on the 147 pairs with structural neuroimaging and available hemoglobin data. Data analyses were conducted in 2021 and 2022. EXPOSURES: Mothers had hemoglobin measurements during pregnancy, and a subgroup of children had hemoglobin measurements during early life. Anemia was classified as hemoglobin levels less than 11 g/dL based on World Health Organization guidelines; children younger than 6 months were classified using local guidelines. MAIN OUTCOMES AND MEASURES: Child brain volumes of global, subcortical, and corpus callosum structures were quantified using T1-weighted MRI. Linear regression models were used to analyze the associations between maternal and child anemia with child brain volumes, accounting for potential confounders. RESULTS: Of 147 children (mean [SD] age at MRI, 34 [2] months; 83 [56.5%] male) with high-resolution MRI scans, prevalence of maternal anemia in pregnancy was 31.3% (46 of 147; median [IQR] gestation of measurement: 13 [9-20] weeks). Maternal anemia during pregnancy was significantly associated with smaller volumes of the child caudate bilaterally (adjusted percentage difference, -5.30% [95% CI, -7.01 to -3.59]), putamen (left hemisphere: -4.33% [95% CI, -5.74 to -2.92]), and corpus callosum (-7.75% [95% CI, -11.24 to -4.26]). Furthermore, antenatal maternal hemoglobin levels were also associated with brain volumes in the caudate (left hemisphere: standardized β = 0.15 [95% CI, 0.02 to 0.28]; right hemisphere: β = 0.15 [95% CI, 0.02 to 0.27]), putamen left hemisphere (β = 0.21 [95% CI, 0.07 to 0.35]), and corpus callosum (β = 0.24 [95% CI, 0.09 to 0.39]). Prevalence of child anemia was 52.5% (42 of 80; median [IQR] age of measurement: 8.0 [2.7 to 14.8] months). Child anemia was not associated with brain volumes, nor did it mediate the association of maternal anemia during pregnancy with brain volumes. CONCLUSIONS AND RELEVANCE: In this cohort study, anemia in pregnancy was associated with altered child brain structural development. Given the high prevalence of antenatal maternal anemia worldwide, these findings suggest that optimizing interventions during pregnancy may improve child brain outcomes

    Table_1_1H-MRS neurometabolite profiles and motor development in school-aged children who are HIV-exposed uninfected: a birth cohort study.DOCX

    No full text
    ObjectiveAlterations in regional neurometabolite levels as well as impaired neurodevelopmental outcomes have previously been observed in children who are HIV-exposed uninfected (CHEU). However, little is known about how neurometabolite profiles may relate to their developmental impairment. This study aimed to compare neurometabolite concentrations in school-aged CHEU and children who are HIV-unexposed (CHU) and to explore associations of neurometabolite profiles with functional neurodevelopment in the context of perinatal HIV exposure.MethodsWe used 3 T single voxel proton magnetic resonance spectroscopy (1H-MRS) to quantify absolute and relative neurometabolites in the parietal gray and parietal white matter in school-aged CHEU and aged- and community-matched CHU. Functional neurodevelopmental outcomes were assessed using the early learning outcome measure (ELOM) tool at 6 years of age.ResultsOur study included 152 school-aged children (50% males), 110 CHEU and 42 CHU, with an average age of 74 months at the neuroimaging visit. In an adjusted multiple linear regression analysis, significantly lower glutamate (Glu) concentrations were found in CHEU as compared to CHU in the parietal gray matter (absolute Glu, p = 0.046; Glu/total creatine (Cr+PCr) ratios, p = 0.035) and lower total choline to creatine ratios (GPC+PCh/Cr+PCr) in the parietal white matter (p = 0.039). Using factor analysis and adjusted logistic regression analysis, a parietal gray matter Glu and myo-inositol (Ins) dominated factor was associated with HIV exposure status in both unadjusted (OR 0.55, 95% CI 0.17–0.45, p = 0.013) and adjusted analyses (OR 0.59, 95% CI 0.35–0.94, p = 0.031). With Ins as one of the dominating metabolites, this neurometabolic factor was similar to that found at the age of two years. Furthermore, this factor was also found to be correlated with ELOM scores of gross motor development in CHEU (Pearson’s r = −0.48, p = 0.044). In addition, in CHEU, there was a significant association between Ins/Cr+PCr ratios in the parietal white matter and ELOM scores of fine motor coordination and visual motor integration in CHEU (Pearson’s r = 0.51, p = 0.032).ConclusionReduced Glu concentrations in the parietal gray matter may suggest regional alterations in excitatory glutamatergic transmission pathways in the context of perinatal HIV and/or antiretroviral therapy (ART) exposure, while reduced Cho ratios in the parietal white matter suggest regional myelin loss. Identified associations between neurometabolite profiles and gross and fine motor developmental outcomes in CHEU are suggestive of a neurometabolic mechanism that may underlie impaired motor neurodevelopmental outcomes observed in CHEU.</p
    corecore