135 research outputs found

    Translational Cancer Research: Balancing Prevention and Treatment to Combat Cancer Globally

    Get PDF
    Cancer research is drawing on the human genome project to develop new molecular-targeted treatments. This is an exciting but insufficient response to the growing, global burden of cancer, particularly as the projected increase in new cases in the coming decades is increasingly falling on developing countries. The world is not able to treat its way out of the cancer problem. However, the mechanistic insights from basic science can be harnessed to better understand cancer causes and prevention, thus underpinning a complementary public health approach to cancer control. This manuscript focuses on how new knowledge about the molecular and cellular basis of cancer, and the associated high-throughput laboratory technologies for studying those pathways, can be applied to population-based epidemiological studies, particularly in the context of large prospective cohorts with associated biobanks to provide an evidence base for cancer prevention. This integrated approach should allow a more rapid and informed translation of the research into educational and policy interventions aimed at risk reduction across a population

    A multicentre epidemiological study on sunbed use and cutaneous melanoma in Europe

    Get PDF
    A large European case-control study investigated the association between sunbed use and cutaneous melanoma in an adult population aged between 18 and 49 years. Between 1999 and 2001 sun and sunbed exposure was recorded in 597 newly diagnosed melanoma cases and 622 controls in Belgium, France, The Netherlands, Sweden and the UK. Fifty three precent of cases and 57% of controls ever used sunbeds. The overall adjusted odds ratio (OR) associated with ever sunbed use was 0.90 (95% CI: 0.71-1.14). There was a South-to-North gradient with high prevalence of sunbed exposure in Northern Europe and lower prevalence in the South (prevalence of use in France 20%, OR: 1.19 (0.68-2.07) compared to Sweden, prevalence 83%, relative risk 0.62 (0.26-1.46)). Dose and lag-time between first exposure to sunbeds and time of study were not associated with melanoma risk, neither were sunbathing and sunburns (adjusted OR for mean number of weeks spent in sunny climates >14 years: 1.12 (0.88-1.43); adjusted OR for any sunburn >14 years: 1.16 (0.9-1.45)). Host factors such as numbers of naevi and skin type were the strongest risk indicators for melanoma. Public health campaigns have improved knowledge regarding risk of UV-radiation for skin cancers and this may have led to recall and selection biases in both cases and controls in this study. Sunbed exposure has become increasingly prevalent over the last 20 years, especially in Northern Europe but the full impact of this exposure on skin cancers may not become apparent for many years

    Effects of losartan vs candesartan in reducing cardiovascular events in the primary treatment of hypertension

    Get PDF
    Although angiotensin receptor blockers have different receptor binding properties no comparative studies with cardiovascular disease (CVD) end points have been performed within this class of drugs. The aim of this study was to test the hypothesis that there are blood pressure independent CVD-risk differences between losartan and candesartan treatment in patients with hypertension without known CVD. Seventy-two primary care centres in Sweden were screened for patients who had been prescribed losartan or candesartan between the years 1999 and 2007. Among the 24 943 eligible patients, 14 100 patients were diagnosed with hypertension and prescribed losartan (n=6771) or candesartan (n=7329). Patients were linked to Swedish national hospitalizations and death cause register. There was no difference in blood pressure reduction when comparing the losartan and candesartan groups during follow-up. Compared with the losartan group, the candesartan group had a lower adjusted hazard ratio for total CVD (0.86, 95% confidence interval (CI) 0.77–0.96, P=0.0062), heart failure (0.64, 95% CI 0.50–0.82, P=0.0004), cardiac arrhythmias (0.80, 95% CI 0.65–0.92, P=0.0330), and peripheral artery disease (0.61, 95% CI 0.41–0.91, P=0.0140). No difference in blood pressure reduction was observed suggesting that other mechanisms related to different pharmacological properties of the drugs may explain the divergent clinical outcomes
    • …
    corecore