409 research outputs found

    The Contribution of the Cosmological Constant to the Relativistic Bending of Light Revisited

    Full text link
    We study the effect of the cosmological constant Λ\Lambda on the bending of light by a concentrated spherically symmetric mass. Contrarily to previous claims, we show that when the Schwarzschild-de Sitter geometry is taken into account, Λ\Lambda does indeed contribute to the bending.Comment: 5 pages, 2 figure

    Variation of the speed of light with temperature of the expanding universe

    Full text link
    From an extended relativistic dynamics for a particle moving in a cosmic background field with temperature T, we aim to obtain the speed of light with an explicit dependence on the background temperature of the universe. Although finding the speed of light in the early universe much larger than its current value, our approach does not violate the postulate of special relativity. Moreover, it is shown that the high value of the speed of light in the early universe was drastically decreased before the beginning of the inflationary period. So we are led to conclude that the theory of varying speed of light should be questioned as a possible solution of the horizon problem.Comment: 3 pages and 1 figure; Phys. Rev. D86, 027703 (2012

    Scattering of scalar perturbations with cosmological constant in low-energy and high-energy regimes

    Full text link
    We study the absorption and scattering of massless scalar waves propagating in spherically symmetric spacetimes with dynamical cosmological constant both in low-energy and high-energy zones. In the former low-energy regime, we solve analytically the Regge-Wheeler wave equation and obtain an analytic absorption probability expression which varies with MΛM\sqrt{\Lambda}, where MM is the central mass and Λ\Lambda is cosmological constant. The low-energy absorption probability, which is in the range of [0,0.986701][0, 0.986701], increases monotonically with increase in Λ\Lambda. In the latter high-energy regime, the scalar particles adopt their geometric optics limit value. The trajectory equation with effective potential emerges and the analytic high-energy greybody factor, which is relevant with the area of classically accessible regime, also increases monotonically with increase in Λ\Lambda, as long Λ\Lambda is less than or of the order of 10410^4. In this high-energy case, the null cosmological constant result reduces to the Schwarzschild value 27πrg2/427\pi r_g^2/4.Comment: 12 pages, 6 figure

    The Schwarzschild-de Sitter solution in five-dimensional general relativity briefly revisited

    Get PDF
    We briefly revisit the Schwarzschild-de Sitter solution in the context of five-dimensional general relativity. We obtain a class of five-dimensional solutions of Einstein vacuum field equations into which the four-dimensional Schwarzschild-de Sitter space can be locally and isometrically embedded. We show that this class of solutions is well-behaved in the limit of lambda approaching zero. Applying the same procedure to the de Sitter cosmological model in five dimensions we obtain a class of embedding spaces which are similarly well-behaved in this limit. These examples demonstrate that the presence of a non-zero cosmological constant does not in general impose a rigid relation between the (3+1) and (4+1)-dimensional spacetimes, with degenerate limiting behaviour.Comment: 7 page

    Submanifolds in five-dimensional pseudo-Euclidean spaces and four-dimensional FRW universes

    Full text link
    Equations for submanifolds, which correspond to embeddings of the four-dimensional FRW universes in five-dimensional pseudo-Euclidean spaces, are presented in convenient form in general case. Several specific examples are considered.Comment: 7 pages, LaTeX, the mathematical part of this paper is based on the withdrawn preprint arXiv:1012.0320 [gr-qc

    Light Deflection, Lensing, and Time Delays from Gravitational Potentials and Fermat's Principle in the Presence of a Cosmological Constant

    Full text link
    The contribution of the cosmological constant to the deflection angle and the time delays are derived from the integration of the gravitational potential as well as from Fermat's Principle. The findings are in agreement with recent results using exact solutions to Einstein's equations and reproduce precisely the new Λ\Lambda-term in the bending angle and the lens equation. The consequences on time delay expressions are explored. While it is known that Λ\Lambda contributes to the gravitational time delay, it is shown here that a new Λ\Lambda-term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at galaxy cluster scale, the Λ\Lambda contribution can be larger than the second-order term in the Einstein deflection angle for several cluster lens systems.Comment: 6 pages, 1 figure, matches version published in PR

    Derivation of the Planck Spectrum for Relativistic Classical Scalar Radiation from Thermal Equilibrium in an Accelerating Frame

    Full text link
    The Planck spectrum of thermal scalar radiation is derived suggestively within classical physics by the use of an accelerating coordinate frame. The derivation has an analogue in Boltzmann's derivation of the Maxwell velocity distribution for thermal particle velocities by considering the thermal equilibrium of noninteracting particles in a uniform gravitational field. For the case of radiation, the gravitational field is provided by the acceleration of a Rindler frame through Minkowski spacetime. Classical zero-point radiation and relativistic physics enter in an essential way in the derivation which is based upon the behavior of free radiation fields and the assumption that the field correlation functions contain but a single correlation time in thermal equilibrium. The work has connections with the thermal effects of acceleration found in relativistic quantum field theory.Comment: 23 page

    Covariant Calculation of General Relativistic Effects in an Orbiting Gyroscope Experiment

    Get PDF
    We carry out a covariant calculation of the measurable relativistic effects in an orbiting gyroscope experiment. The experiment, currently known as Gravity Probe B, compares the spin directions of an array of spinning gyroscopes with the optical axis of a telescope, all housed in a spacecraft that rolls about the optical axis. The spacecraft is steered so that the telescope always points toward a known guide star. We calculate the variation in the spin directions relative to readout loops rigidly fixed in the spacecraft, and express the variations in terms of quantities that can be measured, to sufficient accuracy, using an Earth-centered coordinate system. The measurable effects include the aberration of starlight, the geodetic precession caused by space curvature, the frame-dragging effect caused by the rotation of the Earth and the deflection of light by the Sun.Comment: 7 pages, 1 figure, to be submitted to Phys. Rev.

    Multi-Black-Holes in Three Dimensions

    Full text link
    We construct time-dependent multi-centre solutions to three-dimensional general relativity with zero or negative cosmological constant. These solutions correspond to dynamical systems of freely falling black holes and conical singularities, with a multiply connected spacetime topology. Stationary multi-black-hole solutions are possible only in the extreme black hole case.Comment: 8 pages, \LaTex, 4 figures (available on request), GCR 94/02/0
    • 

    corecore