10 research outputs found

    Observation of a Reflected Shock in an Indirectly Driven Spherical Implosion at the National Ignition Facility

    Get PDF
    A 200  μm radius hot spot at more than 2 keV temperature, 1  g/cm[superscript 3] density has been achieved on the National Ignition Facility using a near vacuum hohlraum. The implosion exhibits ideal one-dimensional behavior and 99% laser-to-hohlraum coupling. The low opacity of the remaining shell at bang time allows for a measurement of the x-ray emission of the reflected central shock in a deuterium plasma. Comparison with 1D hydrodynamic simulations puts constraints on electron-ion collisions and heat conduction. Results are consistent with classical (Spitzer-Harm) heat flux.United States. Dept. of Energy (Contract DE-AC52-07NA27344)Brookhaven National Laboratory (Laboratory Directed Research and Development Grant 11-ERD-050

    Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    Get PDF
    Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in D[superscript 3]He-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and [superscript 3]He populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.United States. National Nuclear Security Administration (Grant DE-NA0001857)University of Rochester. Fusion Science Center (Grant 415023-G)National Laser User’s Facility (Grant DE-NA0002035)University of Rochester. Laboratory for Laser Energetics (Grant 415935-G)Lawrence Livermore National Laboratory (Grant B600100

    Exploration of the Transition from the Hydrodynamiclike to the Strongly Kinetic Regime in Shock-Driven Implosions

    Get PDF
    Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D[superscript 3]He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly overpredict the observed nuclear yields, from a factor of ∼2 at 3.1  mg/cm[superscript 3] to a factor of 100 at 0.14  mg/cm[superscript 3]. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.United States. Dept. of Energy (Grant DE-NA0001857)United States. Dept. of Energy (Grant DE-FC52-08NA28752)University of Rochester. Fusion Science Center (5-24431)National Laser User’s Facility (DE-NA0002035)University of Rochester. Laboratory for Laser Energetics (415935-G)Lawrence Livermore National Laboratory (B597367

    Determination of the deuterium-tritium branching ratio based on inertial confinement fusion implosions

    No full text
    The deuterium-tritium (D-T) γ-to-neutron branching ratio [[superscript 3]H(d,γ)[superscript 5]He/[superscript 3]H(d,n)[superscript 4]He] was determined under inertial confinement fusion (ICF) conditions, where the center-of-mass energy of 14–24 keV is lower than that in previous accelerator-based experiments. A D-T branching ratio value of (4.2 ± 2.0) × 10[superscript −5] was determined by averaging the results of two methods: (1) a direct measurement of ICF D-T γ-ray and neutron emissions using absolutely calibrated detectors, and (2) a separate cross-calibration against the D-[superscript 3]He γ-to-proton branching ratio [[superscript 3]He(d,γ)[superscript 5]Li/[superscript 3]He(d,p)[superscript 4]He]. Neutron-induced backgrounds were significantly reduced as compared to traditional beam-target accelerator-based experiments due to the short pulse nature of ICF implosions and the use of gas Cherenkov γ-ray detectors with fast temporal responses and inherent energy thresholds. These measurements of the D-T branching ratio in an ICF environment test several theoretical assumptions about the nature of A = 5 systems, including the dominance of the 3/2[superscript +] resonance at low energies, the presence of the broad first excited state of [superscript 5]He in the spectra, and the charge-symmetric nature of the capture processes in the mirror systems [superscript 5]He and [superscript 5]Li.National Laser User’s Facility (United States. Dept. of Energy.) (Grant number DE-FG03-03SF2269)University of Rochester. Fusion Science Center (United States. Dept. of Energy.) (Grant. Number DE-FC02-04ER54789

    Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    No full text
    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D₂ and D³He gas-filled "exploding-pusher" inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D draco hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.United States. Department of Energy (Grant DE-NA0001857

    Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    No full text
    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K[subscript α] and K[subscript β] x-rays. The CR-39 detectors were then exposed to 1–5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.United States. Department of Energy (Grant DE-NA0001857

    First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions

    No full text
    A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with [superscript 3]He gas. These implosions were found to produce D[superscript 3]He-proton shock yields comparable to implosions of identical shells filled with a hydroequivalent 50∶50 D[superscript 3]He gas mixture. Standard hydrodynamic mixing cannot explain this observation, as hydrodynamic modeling including mix predicts a yield an order of magnitude lower than was observed. Instead, these results can be attributed to ion diffusive mix at the fuel-shell interface.United States. Dept. of Energy (Grant DE-NA0001857)University of Rochester. Fusion Science Center (Grant 5-24431)National Laser User’s Facility (Grant DE-NA0002035)University of Rochester. Laboratory for Laser Energetics (Grant 415935-G)Lawrence Livermore National Laboratory (Grant B597367)United States. National Nuclear Security Administration (Stewardship Science Graduate Fellowship DE-FC52-08NA28752

    Structure and Dynamics of Colliding Plasma Jets

    No full text
    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇T[subscript e] × ∇n[subscript e] Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number Re[subscript M] ~ 5 × 10[superscript 4]) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.United States. Dept. of Energy (University of Rochester. Laboratory for Laser Energetics. National Laser User’s Facility DE-FG52-07NA28 059)United States. Dept. of Energy (University of Rochester. Laboratory for Laser Energetics. National Laser User’s Facility DE-FG03-03SF22691)Lawrence Livermore National Laboratory (B543881)Lawrence Livermore National Laboratory (LDRD-08-ER-062)University of Rochester. Laboratory for Laser Energetics (414090-G)University of Rochester. Fusion Science Center (412761-G

    A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and

    No full text
    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.United States. Department of Energy (Grant DE-NA0001857)National Laser User’s Facility (Grant DE-NA0002035

    In-flight observations of low-mode ρR asymmetries in NIF implosions

    No full text
    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D³He gas-filled implosions at the National Ignition Facility produce energetic protons via D+³He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3–5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%, which are interpreted as ℓ=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.United States. Department of Energy (Grant DE-NA0001857)United States. Department of Energy (Grant DE-FC52-08NA28752
    corecore