27 research outputs found

    Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications

    Get PDF
    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials

    Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste

    Get PDF
    Alkali-activated aqueous slurries of fine glass powders, mostly deriving from the plasma processing of municipal solid waste ('Plasmastone'), were found to undergo progressive hardening at low temperature (75 degrees C) owing to the formation of C-S-H (calcium silicate hydrate) gels. Before complete setting, slurries could be easily foamed by vigorous mechanical stirring, with the help of a surfactant; finally, the resulting open-celled structure could be 'frozen' by a subsequent sintering treatment, with crystallization of Ca-Fe silicates. The densification of the struts upon firing was enhanced by mixing Plasmastone with up to 30 wt% recycled glasses and increasing the firing temperature from 800 to 1000 degrees C. A total porosity exceeding 75 vol%, comprising both well-interconnected macro- and micro-sized pores on cell walls, was accompanied by good compressive strength, well above 1 MPa. The stabilization of pollutants generally increased with increasing firing temperature and glass content, with some exceptions; no practical leaching was observed from samples deriving from Plasmastone combined with 30 wt% boro-aluminosilicate glass from the recycling of pharmaceutical vials

    Up-cycling of vitrified bottom ash from MSWI into glass-ceramic foams by means of ‘inorganic gel casting’ and sinter-crystallization

    Get PDF
    The transformation of vitrified waste, such as bottom ash from municipal waste incineration, into cellular glass-ceramics is convenient, if the additional processing is simple and inexpensive. The present paper aims at presenting a possible route to achieve this goal, based on the recently proposed mechanical foaming of alkali-activated suspensions of waste glass powders, followed by sinter-crystallization at moderate temperatures (from 800 to 900 °C). Compared to previously studied glasses, in this experiment bottom ash-derived glass suspensions underwent progressive hardening at low alkali molarity and in limited times. The firing did not alter the open-celled structure that had developed upon low temperature foaming, owing to a significant crystallization. With an overall porosity of 80%, the optimized foams exhibited a remarkable compressive strength (>6 MPa). Finally, the process had no negative impact on the leaching of toxic elements, which remained well below the thresholds for inert materials

    Use of soda lime glass waste as silica supplier in fly ash based geopolymers

    Get PDF
    Geopolymers have been primarily proposed for the construction industry as a substitute for Portland cement considering the lower CO2 emissions associated with their production. The relatively high compressive strength and chemical inertness of geopolymers, in addition to the possibility to incorporate in the network hazardous waste materials, increase the current interest in this technology. Geopolymers are usually composed of an aluminosilicate source activated with a solution of sodium silicate and sodium hydroxide. The present study evaluates the feasibility of using waste glass as silica source instead of water glass in geopolymer production, using sodium hydroxide as the only non-waste material.The samples were developed changing the SiO2/Al2O3 molar ratio and the molarity of the sodium hydroxide solution. Fig. 1 shows that the compressive strength tends to rise as the molarity of the solution as well as the SiO2/Al2O3 molar ratio increase. The compressive strength values, around 45 MPa, are comparable to those of traditional Portland cement and they are remarkable considering the high amount of waste glass (70% wt.) incorporated in the matrix . SEM pictures demonstrated the formation of a compact matrix indicating the high reaction degree of the raw materials. Please click Additional Files below to see the full abstract

    Glass-Ceramic Foams from 'Weak Alkali Activation' and Gel-Casting ofWaste Glass/Fly Ash Mixtures

    Get PDF
    A 'weak alkali activation' was applied to aqueous suspensions based on soda lime glass and coal fly ash. Unlike in actual geopolymers, an extensive formation of zeolite-like gels was not expected, due to the low molarity of the alkali activator (NaOH) used. In any case, the suspension underwent gelation and presented a marked pseudoplastic behavior. A significant foaming could be achieved by air incorporation, in turn resulting from intensive mechanical stirring (with the help of a surfactant), before complete hardening. Dried foams were later subjected to heat treatment at 700-900 °C. The interactions between glass and fly ash, upon firing, determined the formation of new crystal phases, particularly nepheline (sodium alumino-silicate), with remarkable crushing strength (~6 MPa, with a porosity of about 70%). The fired materials, finally, demonstrated a successful stabilization of pollutants from fly ash and a low thermal conductivity that could be exploited for building applications

    Up-cycling of vitrified bottom ash from MSWI into glass-ceramic foams by means of "inorganic gel casting" and sinter-crystallization

    Get PDF
    The transformation of vitrified waste, such as bottom ash from municipal waste incineration, into cellular glass-ceramics is convenient, if the additional processing is simple and inexpensive. The present paper aims at presenting a possible route to achieve this goal, based on the recently proposed mechanical foaming of alkali-activated suspensions of waste glass powders, followed by sinter-crystallization at moderate temperatures (from 800 to 900 °C). Compared to previously studied glasses, in this experiment bottom ash-derived glass suspensions underwent progressive hardening at low alkali molarity and in limited times. The firing did not alter the open-celled structure that had developed upon low temperature foaming, owing to a significant crystallization. With an overall porosity of 80%, the optimized foams exhibited a remarkable compressive strength (>6 MPa). Finally, the process had no negative impact on the leaching of toxic elements, which remained well below the thresholds for inert materials

    SiC/YAG composite coatings by a novel liquid fuelled high velocity oxy-fuel suspension thermal spray

    Get PDF
    Despite recent advances in suspension-based thermal spray techniques, there is still a need to widen the capability of available thermal spray setups to handle suspension to explore new compositions and improve the properties and performance of existing ones. In this work, a novel setup for injecting liquid-based feedstock in a liquid-fuelled high velocity oxy-fuel (HVOLF) thermal spray torch is proposed, involving a new hardware (“Hybrid Nozzle”) capable of injecting suspension radially and protecting the thermal spray flame from the environmental oxygen by inert gas shrouding. The new setup was used to deposit SiC/YAG composite coatings with 85 wt% SiC content, and their wear performance was evaluated. An oxygen deficient environment was provided to the HVOLF flame, ensuring that no or minimal (<2 wt%) SiO2 was formed in the coating during the spray, as confirmed by XRD. A good wear performance was observed at low load below 20 N, with a specific wear rate < 5 × 10−5 mm3/Nm, with the onset of wear mechanisms characteristic of ceramic wear in the brittle regime between 20 and 30 N. The future applicability of this novel setup to a range of oxidation- and heat-sensitive materials and composites offers the opportunity for new coating materials to be explored with suspension and solution precursor-based HVOLF thermal spray

    Bioactive glass-ceramic foam scaffolds from "inorganic gel casting" and sinter-crystallization

    Get PDF
    Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2) were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80%) and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions

    Highly porous mullite ceramics from engineered alkali activated suspensions

    Get PDF
    Air may be easily incorporated by vigorous mechanical stirring, with the help of surfactants, of activated geopolymer-yielding suspensions. The cellular structure is stabilized by the viscosity increase caused by curing reactions, configuring an “inorganic gel casting”. The present paper is aimed at extending this approach to mullite foams, obtained by the thermal treatment of engineered alkali activated suspensions. “Green” foams were first obtained by gel casting of a suspension for Na-geopolymer enriched with reactive γ-Al2O3 powders. Sodium was later extracted by ionic exchange with ammonium salts. In particular, the removal of Na+ ions was achieved by immersion in ammonium nitrate solution overnight, with retention of the cellular structure. Finally, the ion-exchanged foams were successfully converted into pure mullite foams by application of a firing treatment at 1300°C, for 1 hour. Preliminary results concerning the extension of the concept to mullite three-dimensional scaffolds are presented as well

    Steam Degradation of Ytterbium Disilicate Environmental Barrier Coatings: Effect of Composition, Microstructure and Temperature

    Get PDF
    Recession of environmental barrier coatings (EBC) in environments containing steam is a pressing concern that requires further research before their implementation in gas turbine engines can be realized. In this work, free-standing plasma sprayed Yb2Si2O7 coatings were exposed to flowing steam at 1350 {\deg}C and 1400 {\deg}C for 96 h. Three samples were investigated, one coating with a low porosity level (< 3 %) and 1 wt.% Al2O3 representing traditional EBCs; and two coatings with higher porosity levels (~20 %) representing abradable EBCs. Phase composition and microstructural evolution were studied in order to reveal the underlying mechanism for the interaction between high temperature steam and ytterbium disilicate. The results show depletion of Yb2SiO5 near the surface and formation of ytterbium garnet (Yb3Al5O12) on top of all three coatings due to the reaction with gaseous Al-containing impurities coming from the alumina furnace tubes. The 1 wt.% Al2O3 added to the EBC sample exacerbated the formation of garnet at 1400 {\deg}C compared to the abradable samples, which presented lower quantities of garnet. Additionally, inter-splat boundaries were visible after exposure, indicating preferential ingress of gaseous Al-containing impurities through the splat boundarie
    corecore