7 research outputs found

    Survey of Tyrosine Kinase Signaling Reveals ROS Kinase Fusions in Human Cholangiocarcinoma

    Get PDF
    Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23) of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted

    Recovery from liver disease in a Niemann-Pick type C mouse model

    No full text
    Loss of function of Niemann-Pick C1 (NPC1) leads to lysosomal free cholesterol storage, resulting in the neurodegenerative disease Niemann-Pick disease type C (NPC). Significant numbers of patients with NPC also suffer from liver disease. Currently, no treatments exist that alter patient outcome, and it is unknown if recovery from tissue damage can occur even if a treatment were found. Our laboratory developed a strategy to test whether mice can recover from NPC liver disease. We used antisense oligonucleotides to knock down hepatic expression of NPC1 in BALB/C mice for either 9 or 15 weeks. This recapitulated liver disease with hepatomegaly, cell death, and fibrosis. Then, antisense oligonucleotide treatment was halted for an additional 4, 9, or 15 weeks. We report that significant liver recovery occurred even when NPC1 protein expression only partially returned to normal. Several pathological phenotypes were alleviated, including hepatomegaly, cholesterol storage, and liver cell death. Histological examination revealed that foamy cell accumulation was relieved; however, liver fibrosis increased. Additionally, resolution of cholesterol storage and liver cell death took longer in mice with long-term knockdown. Finally, we found that transcription of cholesterol homeostatic genes was significantly disrupted during the recovery phase after long-term knockdown

    TNF-α plays a role in hepatocyte apoptosis in Niemann-Pick type C liver disease*

    No full text
    Niemann-Pick type C (NPC) is a fatal autosomal recessive lysosomal storage disease clinically characterized by neurodegeneration and liver disease. Heterogeneous mutations in the NPC1 and NPC2 genes cause impaired egress of free cholesterol from lysosomes, leading to accumulation of cholesterol and glycosphingolipids. Key features of NPC liver disease include hepatic apoptosis, inflammation, and fibrosis. It is unclear what signaling events regulate these disease processes in NPC. We hypothesize that tumor necrosis factor α (TNF-α), which is involved in both proinflammatory and apoptotic signaling cascades, is a key mediator of inflammation, apoptosis, and fibrosis in NPC liver disease. In this study, we evaluated the role of TNF-α signaling in NPC liver disease by utilizing NPC1-specific antisense oligonucleotides to knock down NPC1 expression in control and TNF-α knockout mice. In the absence of TNF-α, NPC1 knockdown produced liver disease with significantly less inflammation, apoptosis, and fibrosis

    Evasion of immunosurveillance by genomic alterations of PPARγ/RXRα in bladder cancer.

    Get PDF
    Muscle-invasive bladder cancer (MIBC) is an aggressive disease with limited therapeutic options. Although immunotherapies are approved for MIBC, the majority of patients fail to respond, suggesting existence of complementary immune evasion mechanisms. Here, we report that the PPARγ/RXRα pathway constitutes a tumor-intrinsic mechanism underlying immune evasion in MIBC. Recurrent mutations in RXRα at serine 427 (S427F/Y), through conformational activation of the PPARγ/RXRα heterodimer, and focal amplification/overexpression of PPARγ converge to modulate PPARγ/RXRα-dependent transcription programs. Immune cell-infiltration is controlled by activated PPARγ/RXRα that inhibits expression/secretion of inflammatory cytokines. Clinical data sets and an in vivo tumor model indicate that PPARγHigh/RXRαS427F/Y impairs CD8+ T-cell infiltration and confers partial resistance to immunotherapies. Knockdown of PPARγ or RXRα and pharmacological inhibition of PPARγ significantly increase cytokine expression suggesting therapeutic approaches to reviving immunosurveillance and sensitivity to immunotherapies. Our study reveals a class of tumor cell-intrinsic "immuno-oncogenes" that modulate the immune microenvironment of cancer.Muscle-invasive bladder cancer (MIBC) is a potentially lethal disease. Here the authors characterize diverse genetic alterations in MIBC that convergently lead to constitutive activation of PPARgamma/RXRalpha and result in immunosurveillance escape by inhibiting CD8+ T-cell recruitment
    corecore