3 research outputs found

    Chemocentric Informatics Approach to Drug Discovery: Identification and Experimental Validation of Selective Estrogen Receptor Modulators as Ligands of 5-Hydroxytryptamine-6 Receptors and as Potential Cognition Enhancers

    No full text
    We have devised a chemocentric informatics methodology for drug discovery integrating independent approaches to mining biomolecular databases. As a proof of concept, we have searched for novel putative cognition enhancers. First, we generated Quantitative Structure–Activity Relationship (QSAR) models of compounds binding to 5-hydroxytryptamine-6 receptor (5-HT<sub>6</sub>R), a known target for cognition enhancers, and employed these models for virtual screening to identify putative 5-HT<sub>6</sub>R actives. Second, we queried chemogenomics data from the Connectivity Map (http://www.broad.mit.edu/cmap/) with the gene expression profile signatures of Alzheimer’s disease patients to identify compounds putatively linked to the disease. Thirteen common hits were tested in 5-HT<sub>6</sub>R radioligand binding assays and ten were confirmed as actives. Four of them were known selective estrogen receptor modulators that were never reported as 5-HT<sub>6</sub>R ligands. Furthermore, nine of the confirmed actives were reported elsewhere to have memory-enhancing effects. The approaches discussed herein can be used broadly to identify novel drug–target–disease associations

    Table_1_A cross-sectional study confirms temporary post-COVID-19 vaccine menstrual irregularity and the associated physiological changes among vaccinated women in Jordan.docx

    No full text
    BackgroundCOVID-19 vaccines continue to save people’s lives around the world; however, some vaccine adverse events have been a major concern which slowed down vaccination campaigns. Anecdotal evidence pointed to the vaccine effect on menstruation but evidence from the adverse event reporting systems and the biomedical literature was lacking. This study aimed to investigate the physiological changes in women during menstruation amid the COVID-19 vaccination.MethodsA cross-sectional online survey was distributed to COVID-19 vaccinated women from Nov 2021 to Jan 2022. The results were analyzed using the SPSS software.ResultsAmong the 564 vaccinated women, 52% experienced significant menstrual irregularities post-vaccination compared to before regardless of the vaccine type. The kind of menstrual irregularity varied among the vaccinated women, for example, 33% had earlier menstruation, while 35% reported delayed menstruation. About 31% experienced heavier menstruation, whereas 24% had lighter menstrual flow. About 29% had menstruation last longer, but 13% had it shorter than usual. Noteworthy, the menstrual irregularities were more frequent after the second vaccine shot, and they disappeared within 3 months on average. Interestingly, 24% of the vaccinated women reported these irregularities to their gynecologist.ConclusionThe COVID-19 vaccine may cause physiological disturbances during menstruation. Luckily, these irregularities were short-termed and should not be a reason for vaccine hesitancy in women. Further studies are encouraged to unravel the COVID-19 vaccine adverse effect on women’s health.</p

    DataSheet_1_Exploring the effect of estrogen on Candida albicans hyphal cell wall glycans and ergosterol synthesis.docx

    Get PDF
    Increased levels of 17-β estradiol (E2) due to pregnancy in young women or to hormonal replacement therapy in postmenopausal women have long been associated with an increased risk of yeast infections. Nevertheless, the effect underlying the role of E2 in Candida albicans infections is not well understood. To address this issue, functional, transcriptomic, and metabolomic analyses were performed on C. albicans cells subjected to temperature and serum induction in the presence or absence of E2. Increased filament formation was observed in E2 treated cells. Surprisingly, cells treated with a combination of E2 and serum showed decreased filament formation. Furthermore, the transcriptomic analysis revealed that serum and E2 treatment is associated with downregulated expression of genes involved in filamentation, including HWP1, ECE1, IHD1, MEP1, SOD5, and ALS3, in comparison with cells treated with serum or estrogen alone. Moreover, glucose transporter genes HGT20 and GCV2 were downregulated in cells receiving both serum and E2. Functional pathway enrichment analysis of the differentially expressed genes (DEGs) suggested major involvement of E2 signaling in several metabolic pathways and the biosynthesis of secondary metabolites. The metabolomic analysis determined differential secretion of 36 metabolites based on the different treatments’ conditions, including structural carbohydrates and fatty acids important for hyphal cell wall formation such as arabinonic acid, organicsugar acids, oleic acid, octadecanoic acid, 2-keto-D-gluconic acid, palmitic acid, and steriacstearic acid with an intriguing negative correlation between D-turanose and ergosterol under E2 treatment. In conclusion, these findings suggest that E2 signaling impacts the expression of several genes and the secretion of several metabolites that help regulate C. albicans morphogenesis and virulence.</p
    corecore