86 research outputs found

    Effects of electrical stimulation of dorsal raphe nucleus on neuronal response properties of barrel cortex layer IV neurons following long-term sensory deprivation

    Get PDF
    Abstract: Objective To evaluate the effect of electrical stimulation of dorsal raphe nucleus (DRN) on response properties of layer IV barrel cortex neurons following long-term sensory deprivation. Methods: Male Wistar rats were divided into sensory-deprived (SD) and control (unplucked) groups. In SD group, all vibrissae except the D2 vibrissa were plucked on postnatal day one, and kept plucked for a period of 60 d. After that, whisker regrowth was allowed for 8-10 d. The D2 principal whisker (PW) and the D1 adjacent whisker (AW) were either deflected singly or both deflected in a serial order that the AW was deflected 20 ms before PW deflection for assessing lateral inhibition, and neuronal responses were recorded from layer IV of the D2 barrel cortex. DRN was electrically stimulated at inter-stimulus intervals (ISIs) ranging from 0 to 800 ms before whisker deflection. Results: PW-evoked responses increased in the SD group with DRN electrical stimulation at ISIs of 50 ms and 100 ms, whereas AW-evoked responses increased at ISI of 800 ms in both groups. Whisker plucking before DRN stimulation could enhance the responsiveness of barrel cortex neurons to PW deflection and decrease the responsiveness to AW deflection. DRN electrical stimulation significantly reduced this difference only in PW-evoked responses between groups. Besides, no DRN stimulation-related changes in response latency were observed following PW or AW deflection in either group. Moreover, condition test (CT) ratio increased in SD rats, while DRN stimulation did not affect the CT ratio in either group. There was no obvious change in 5-HT2A receptor protein density in barrel cortex between SD and control groups. Conclusion: These results suggest that DRN electrical stimulation can modulate information processing in the SD barrel cortex

    The price of rapid exit in venture capital-backed IPOs

    Get PDF
    This paper proposes an explanation for two empirical puzzles surrounding initial public offerings (IPOs). Firstly, it is well documented that IPO underpricing increases during “hot issue” periods. Secondly, venture capital (VC) backed IPOs are less underpriced than non-venture capital backed IPOs during normal periods of activity, but the reverse is true during hot issue periods: VC backed IPOs are more underpriced than non-VC backed ones. This paper shows that when IPOs are driven by the initial investor’s desire to exit from an existing investment in order to finance a new venture, both the value of the new venture and the value of the existing firm to be sold in the IPO drive the investor’s choice of price and fraction of shares sold in the IPO. When this is the case, the availability of attractive new ventures increases equilibrium underpricing, which is what we observe during hot issue periods. Moreover, I show that underpricing is affected by the severity of the moral hazard problem between an investor and the firm’s manager. In the presence of a moral hazard problem the degree of equilibrium underpricing is more sensitive to changes in the value of the new venture. This can explain why venture capitalists, who often finance firms with more severe moral hazard problems, underprice IPOs less in normal periods, but underprice more strongly during hot issue periods. Further empirical implications relating the fraction of shares sold and the degree of underpricing are presented

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Collaborative International Research in Clinical and Longitudinal Experience Study in NMOSD

    Get PDF
    OBJECTIVE: To develop a resource of systematically collected, longitudinal clinical data and biospecimens for assisting in the investigation into neuromyelitis optica spectrum disorder (NMOSD) epidemiology, pathogenesis, and treatment. METHODS: To illustrate its research-enabling purpose, epidemiologic patterns and disease phenotypes were assessed among enrolled subjects, including age at disease onset, annualized relapse rate (ARR), and time between the first and second attacks. RESULTS: As of December 2017, the Collaborative International Research in Clinical and Longitudinal Experience Study (CIRCLES) had enrolled more than 1,000 participants, of whom 77.5% of the NMOSD cases and 71.7% of the controls continue in active follow-up. Consanguineous relatives of patients with NMOSD represented 43.6% of the control cohort. Of the 599 active cases with complete data, 84% were female, and 76% were anti-AQP4 seropositive. The majority were white/Caucasian (52.6%), whereas blacks/African Americans accounted for 23.5%, Hispanics/Latinos 12.4%, and Asians accounted for 9.0%. The median age at disease onset was 38.4 years, with a median ARR of 0.5. Seropositive cases were older at disease onset, more likely to be black/African American or Hispanic/Latino, and more likely to be female. CONCLUSION: Collectively, the CIRCLES experience to date demonstrates this study to be a useful and readily accessible resource to facilitate accelerating solutions for patients with NMOSD

    Quadrupole moments of collective structures up to spin ̃65h in 157Er and 158Er: A challenge for understanding triaxiality in nuclei

    Get PDF
    The transition quadrupole moments, Qt, of four weakly populated collective bands up to spin ̃65h in 157,158Er have been measured to be ̃11 eb demonstrating that these sequences are associated with large deformations. However, the data are inconsistent with calculated values from cranked Nilsson-Strutinsky calculations that predict the lowest energy triaxial shape to be associated with rotation about the short principal axis. The data appear to favor either a stable triaxial shape rotating about the intermediate axis or, alternatively, a triaxial shape with larger deformation rotating about the short axis. These new results challenge the present understanding of triaxiality in nuclei

    Non-yrast positive-parity structures in the γ-soft nucleus Er156

    Get PDF
    Weakly populated band structures have been established in Er156 at low to medium spins, following the Cd114(Ca48,6nγ) reaction at 215 MeV. High-fold γ-ray coincidence data were recorded in a high-statistics experiment with the Gammasphere spectrometer. Bands built on the second 0+ and 2+ (γ-vibrational) states have been established. A large energy staggering between the even- and odd-spin members of the γ-vibrational band suggests a γ-soft nature of this nucleus. An additional band is discussed as being based on a rotationally aligned (νh9/2,f 7/2)2 structure, coexisting with the systematically observed, more favorable (νi13/2)2 aligned structure seen in this mass region

    Collective structures up to spin ∼ 65h in the N 90 isotones 158Er and 157Ho

    Get PDF
    A new collective band with high dynamic moment of inertia in 158Er at spins beyond band termination has been found in addition to the two previously reported ones. The measured transition quadrupole moments (Qt) of these three bands are very similar. These three bands have been suggested to possess a triaxial strongly deformed shape, based on comparisons with calculations using the cranked Nilsson-Strutinsky model and with tilted axis cranking calculations using the Skyrme-Hartree-Fock model. In addition, three collective bands with similar high dynamic moments of inertia, tentatively assigned to 157Ho, have been observed. Thus, it is suggested that all these structures share a common underlying character and that they are most likely associated with triaxial strongly deformed minima which are predicted to be close to the yrast line at spin 50 - 70h
    corecore