864 research outputs found

    Expanding the targeting process into the space domain

    Get PDF
    The current targeting cycle used by the services relies heavily upon the use of space assets. The Global Positioning System (GPS) and satellite communications are just a few of these assets accessed thousands of times a day. With technology growing by leaps and bounds, it is a challenge for tactical and operational commanders to keep up with the growing capabilities offered by space-borne platforms. Having this in-depth knowledge can assist in all facets of combat, from the best time to attack, to acquiring and relaying battle damage assessment (BDA) and combat assessment (CA). One of the most vital roles for the warfighter is targeting. Effective targeting, with the right munitions on the right target at the right time, can make a difference in the battle and the overall war. Just as one misplaced or inaccurate bomb can fall on a peaceful village resulting in unwanted collateral damage and bad publicity immediately fed back to the U.S. impacting public opinion. Properly placed effects can shorten the span of a conflict, save lives, and satisfy strategic requirements. Space is a critical link in this process and is not being effectively used to its utmost capability. This thesis will discuss methods and databases through which space capabilities can be better integrated into the current targeting cycle.http://archive.org/details/expandingtargeti109454061US Marine Corps (USMC) author.Approved for public release; distribution is unlimited

    Barriers to recruiting primary care practices for implementation research during COVID-19: A qualitative study of practice coaches from the Stop Unhealthy (STUN) Alcohol Use Now trial

    Get PDF
    Background: The COVID-19 pandemic has brought widespread change to health care practice and research. With heightened stress in the general population, increased unhealthy alcohol use, and added pressures on primary care practices, comes the need to better understand how we can continue practice-based research and address public health priorities amid the ongoing pandemic. The current study considers barriers and facilitators to conducting such research, especially during the COVID-19 pandemic, within the context of recruiting practices for the STop UNhealthy (STUN) Alcohol Use Now trial. The STUN trial uses practice facilitation to implement screening and interventions for unhealthy alcohol use in primary care practices across the state of North Carolina. Methods: Semistructured interviews were conducted with a purposive sample of 15 practice coaches to discuss their recruitment experiences before and after recruitment was paused due to the pandemic. An inductive thematic analysis was used to identify themes and subthemes. Results: Pandemic-related barriers, including challenges in staffing, finances, and new COVID-19-related workflows, were most prominent. Competing priorities, such as quality improvement measures, North Carolina's implementation of Medicaid managed care, and organizational structures hampered recruitment efforts. Coaches also described barriers specific to the project and to the topic of alcohol. Several facilitators were identified, including the rising importance of behavioral health due to the pandemic, as well as existing relationships between practice coaches and practices. Conclusions: Difficulty managing competing priorities and obstacles within existing practice infrastructure inhibit the ability to participate in practice-based research and implementation of evidence-based practices. Lessons learned from this trial may inform strategies to recruit practices into research and to gain buy-in from practices in adopting evidence-based practices more generally. Plain Language Summary What is known: Unhealthy alcohol use is a significant public health issue, which has been exacerbated during the COVID-19 pandemic. Screening and brief intervention for unhealthy alcohol use is an evidence-based practice shown to help reduce drinking-related behaviors, yet it remains rare in practice. What this study adds: Using a qualitative approach, we identify barriers and facilitators to recruiting primary care practices into a funded trial that uses practice facilitation to address unhealthy alcohol use. We identify general insights as well as those specific to the COVID-19 pandemic. Barriers are primarily related to competing priorities, incentives, and lack of infrastructure. Facilitators are related to framing of the project and the anticipated level and type of resources needed to address unhealthy alcohol use especially as the pandemic wanes. Implications: Our findings provide information on barriers and facilitators to recruiting primary care practices for behavioral health projects and to implementing these activities. Using our findings, we provide a discussion of suggestions for conducting these types of projects in the future which may be of interest to researchers, practice managers, and providers

    DNA-binding by Haemophilus influenzae and Escherichia coli YbaB, members of a widely-distributed bacterial protein family

    Get PDF
    BACKGROUND: Genes orthologous to the ybaB loci of Escherichia coli and Haemophilus influenzae are widely distributed among eubacteria. Several years ago, the three-dimensional structures of the YbaB orthologs of both E. coli and H. influenzae were determined, revealing a novel tweezer -like structure. However, a function for YbaB had remained elusive, with an early study of the H. influenzae ortholog failing to detect DNA-binding activity. Our group recently determined that the Borrelia burgdorferi YbaB ortholog, EbfC, is a DNA-binding protein. To reconcile those results, we assessed the abilities of both the H. influenzae and E. coli YbaB proteins to bind DNA to which B. burgdorferi EbfC can bind. RESULTS: Both the H. influenzae and the E. coli YbaB proteins bound to tested DNAs. DNA-binding was not well competed with poly-dI-dC, indicating some sequence preferences for those two proteins. Analyses of binding characteristics determined that both YbaB orthologs bind as homodimers. Different DNA sequence preferences were observed between H. influenzae YbaB, E. coli YbaB and B. burgdorferi EbfC, consistent with amino acid differences in the putative DNA-binding domains of these proteins. CONCLUSION: Three distinct members of the YbaB/EbfC bacterial protein family have now been demonstrated to bind DNA. Members of this protein family are encoded by a broad range of bacteria, including many pathogenic species, and results of our studies suggest that all such proteins have DNA-binding activities. The functions of YbaB/EbfC family members in each bacterial species are as-yet unknown, but given the ubiquity of these DNA-binding proteins among Eubacteria, further investigations are warranted

    Improving Completeness and Transparency of Reporting in Clinical Trials Using the Template for Intervention Description and Replication (TIDieR) Checklist Will Benefit the Physiotherapy Profession

    Get PDF
    Incomplete reporting of interventions in physiotherapy studies is an important problem and The Journal of Manual and Manipulative Therapy endorses the use of the TIDieR checklist as a potential solution

    Macrophages Infected by a Pathogen and a Non-pathogen Spotted Fever Group Rickettsia Reveal Differential Reprogramming Signatures Early in Infection

    Get PDF
    Despite their high degree of genomic similarity, different spotted fever group (SFG) Rickettsia are often associated with very different clinical presentations. For example, Rickettsia conorii causes Mediterranean spotted fever, a life-threatening disease for humans, whereas Rickettsia montanensis is associated with limited or no pathogenicity to humans. However, the molecular basis responsible for the different pathogenicity attributes are still not understood. Although killing microbes is a critical function of macrophages, the ability to survive and/or proliferate within phagocytic cells seems to be a phenotypic feature of several intracellular pathogens. We have previously shown that R. conorii and R. montanensis exhibit different intracellular fates within macrophage-like cells. By evaluating early macrophage responses upon insult with each of these rickettsial species, herein we demonstrate that infection with R. conorii results in a profound reprogramming of host gene expression profiles. Transcriptional programs generated upon infection with this pathogenic bacteria point toward a sophisticated ability to evade innate immune signals, by modulating the expression of several anti-inflammatory molecules. Moreover, R. conorii induce the expression of several pro-survival genes, which may result in the ability to prolong host cell survival, thus protecting its replicative niche. Remarkably, R. conorii-infection promoted a robust modulation of different transcription factors, suggesting that an early manipulation of the host gene expression machinery may be key to R. conorii proliferation in THP-1 macrophages. This work provides new insights into the early molecular processes hijacked by a pathogenic SFG Rickettsia to establish a replicative niche in macrophages, opening several avenues of research in host-rickettsiae interactions

    BpaB, a Novel Protein Encoded by the Lyme Disease Spirochete\u27s Cp32 Prophages, Binds to Erp Operator 2 DNA

    Get PDF
    Borrelia burgdorferi produces Erp outer surface proteins throughout mammalian infection, but represses their synthesis during colonization of vector ticks. A DNA region 5′ of the start of erp transcription, Operator 2, was previously shown to be essential for regulation of expression. We now report identification and characterization of a novel erp Operator 2-binding protein, which we named BpaB. erp operons are located on episomal cp32 prophages, and a single bacterium may contain as many as 10 different cp32s. Each cp32 family member encodes a unique BpaB protein, yet the three tested cp32-encoded BpaB alleles all bound to the same DNA sequence. A 20-bp region of erp Operator 2 was determined to be essential for BpaB binding, and initial protein binding to that site was required for binding of additional BpaB molecules. A 36-residue region near the BpaB carboxy terminus was found to be essential for high-affinity DNA-binding. BpaB competed for binding to erp Operator 2 with a second B. burgdorferi DNA-binding protein, EbfC. Thus, cellular levels of free BpaB and EbfC could potentially control erp transcription levels

    \u3cem\u3eBorrelia burgdorferi\u3c/em\u3e EbfC Defines a Newly-Identified, Widespread Family of Bacterial DNA-Binding Proteins

    Get PDF
    The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to be the 4 bp broken palindrome GTnAC, where ‘n’ can be any nucleotide. Two high-affinity EbfC-binding sites are located immediately 5′ of B. burgdorferi erp transcriptional promoters, and binding of EbfC was found to alter the conformation of erp promoter DNA. Consensus EbfC-binding sites are abundantly distributed throughout the B. burgdorferi genome, occurring approximately once every 1 kb. These and other features of EbfC suggest that this small protein and its orthologs may represent a distinctive type of bacterial nucleoid-associated protein. EbfC was shown to bind DNA as a homodimer, and site-directed mutagenesis studies indicated that EbfC and its orthologs appear to bind DNA via a novel α-helical ‘tweezer’-like structure

    BpaB, a novel protein encoded by the Lyme disease spirochete’s cp32 prophages, binds to erp Operator 2 DNA

    Get PDF
    Borrelia burgdorferi produces Erp outer surface proteins throughout mammalian infection, but represses their synthesis during colonization of vector ticks. A DNA region 5′ of the start of erp transcription, Operator 2, was previously shown to be essential for regulation of expression. We now report identification and characterization of a novel erp Operator 2-binding protein, which we named BpaB. erp operons are located on episomal cp32 prophages, and a single bacterium may contain as many as 10 different cp32s. Each cp32 family member encodes a unique BpaB protein, yet the three tested cp32-encoded BpaB alleles all bound to the same DNA sequence. A 20-bp region of erp Operator 2 was determined to be essential for BpaB binding, and initial protein binding to that site was required for binding of additional BpaB molecules. A 36-residue region near the BpaB carboxy terminus was found to be essential for high-affinity DNA-binding. BpaB competed for binding to erp Operator 2 with a second B. burgdorferi DNA-binding protein, EbfC. Thus, cellular levels of free BpaB and EbfC could potentially control erp transcription levels

    Modeling and characterization of the SPIDER half-wave plate

    Get PDF
    Spider is a balloon-borne array of six telescopes that will observe the Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the instrument will make a polarization map of the CMB with approximately one-half degree resolution at 145 GHz. Polarization modulation is achieved via a cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have measured millimeter-wave transmission spectra of the sapphire at room and cryogenic temperatures. The spectra are consistent with our physical optics model, and the data gives excellent measurements of the indices of A-cut sapphire. We have also taken preliminary spectra of the integrated HWP, optical system, and detectors in the prototype Spider receiver. We calculate the variation in response of the HWP between observing the CMB and foreground spectra, and estimate that it should not limit the Spider constraints on inflation

    A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands

    Get PDF
    Wetlands are the largest global natural methane (CH4) source, and emissions between 50 and 70° N latitude contribute 10–30% to this source. Predictive capability of land models for northern wetland CH4 emissions is still low due to limited site measurements, strong spatial and temporal variability in emissions, and complex hydrological and biogeochemical dynamics. To explore this issue, we compare wetland CH4 emission predictions from the Community Land Model 4.5 (CLM4.5-BGC) with siteto regional-scale observations. A comparison of the CH4 fluxes with eddy flux data highlighted needed changes to the model’s estimate of aerenchyma area, which we implemented and tested. The model modification substantially reduced biases in CH4 emissions when compared with CarbonTracker CH4 predictions. CLM4.5 CH4 emission predictions agree well with growing season (May–September) CarbonTracker Alaskan regional-level CH4 predictions and sitelevel observations. However, CLM4.5 underestimated CH4 emissions in the cold season (October–April). The monthly atmospheric CH4 mole fraction enhancements due to wetland emissions are also assessed using the Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model coupled with daily emissions from CLM4.5 and compared with aircraft CH4 mole fraction measurements from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) campaign. Both the tower and aircraft analyses confirm the underestimate of cold-season CH4 emissions by CLM4.5. The greatest uncertainties in predicting the seasonal CH4 cycle are from the wetland extent, coldseason CH4 production and CH4 transport processes. We recommend more cold-season experimental studies in highlatitude systems, which could improve the understanding and parameterization of ecosystem structure and function during this period. Predicted CH4 emissions remain uncertain, but we show here that benchmarking against observations across spatial scales can inform model structural and parameter improvements
    corecore