56 research outputs found

    Update on the “Choosing Wisely” initiative in infectious diseases in Germany

    Get PDF
    Purpose The Choosing Wisely® initiative is an international campaign addressing over- and underuse of diagnostic and therapeutic measures in infectious diseases among others. Since 2016, the German Society for Infectious Diseases (DGI) has constantly designed new items in this regard. Here we report the most recent recommendations. Methods The recommendations of the DGI are part of the “Klug entscheiden” initiative of the German Society of Internal Medicine (DGIM). Topics for the new items were suggested by members of the DGI, checked for scientific evidence and consented within the DGI and the DGIM before publication. Results The new recommendations are: (1) individuals with immune-suppression, advanced liver cirrhosis or renal insuf-ficiency should receive a dual pneumococcal vaccination. (2) In case of positive blood cultures with Candida spp. thorough diagnostics and treatment should be initiated. (3) In case of suspected meningitis, adult patients should receive dexametha-sone and antibiotics immediately after venipuncture for blood cultures and before potential imaging. (4) In case of suspected meningitis a CT scan before lumbar puncture should not be ordered—except for symptoms indicating high CSF pressure or focal brain pathology or in cases of severe immune-suppression. (5) In patients with suspected severe infections, a minimum of two pairs of blood cultures should be drawn using separate venipunctures prior to antibiotic therapy—regardless of body temperature. There is no need of a minimum time interval in between the blood draws. Conclusion Applying these new Choosing Wisely® recommendations will increase patient safety and the value of health care

    Kinetics of human myeloid-derived suppressor cells after blood draw

    Get PDF
    Background: Human myeloid-derived suppressor cells (MDSC) have been described as a group of immature myeloid cells which exert immunosuppressive action by inhibiting function of T lymphocytes. While there is a huge scientific interest to study these cells in multiple human diseases, the methodological approach varies substantially between published studies. This is problematic as human MDSC seem to be a sensible cell type concerning not only cryopreservation but also time point after blood draw. To date data on delayed blood processing influencing cell numbers and phenotype is missing. We therefore evaluated the kinetics of granulocytic MDSC (gMDSC) and monocytic MDSC (mMDSC) frequencies after blood draw in order to determine the best time point for analysis of this recently defined cell type. Methods: In this study, we isolated peripheral blood mononuclear cells (PBMC) of patients with HIV infection or solid tumors directly after blood draw. We then analyzed the frequencies of gMDSC and mMDSC 2, 4 and 6 h after blood draw and after an overnight rest by FACS analysis using the standard phenotypic markers. In addition, part of the cells was frozen directly after PBMC preparation and was measured after thawing. Results: gMDSC levels showed no significant difference using fresh PBMC over time with a limitation for the overnight sample. However they were massively diminished after freezing (p = 0.0001 for all subjects). In contrast, frequencies of fresh mMDSC varied over time with no difference between time point 2 and 4 h but a significantly reduction after 6 h and overnight rest (p = 0.0005 and p = 0.005 respectively). Freezing of PBMC decreased the yield of mMDSC reaching statistical significance (p = 0.04). For both MDSC subgroups, FACS analysis became more difficult over time due to less sharp divisions between populations. Conclusions: According to our data human MDSC need to be studied on fresh PBMC. gMDSC can be studied with delay, mMDSC however should be studied no later than 4 h after blood draw. These results are crucial as an increasing number of clinical trials aim at analyzing MDSC nowadays and the logistics of blood processing implies delayed sample processing in some cases

    High frequencies of PMN-MDSCs are associated with low suppressive capacity in advanced stages of HIV-1 infection

    Get PDF
    Background Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are an immature cell type that inhibits the effector functions of T lymphocytes in chronic HIV infection. A well-known immunological feature of the disease course is the development of immune exhaustion, which is correlated with excessive immune activation in late-stage disease. Here, we hypothesized that immune exhaustion would also affect PMN-MDSCs in late-stage HIV-1 infection. Methods We evaluated untreated chronically HIV-infected patients (progressors, n = 10) and control groups (controllers, patients with non-small cell lung carcinoma and healthy controls, n = 16) with regard to levels of PMN-MDSCs and their inhibitory potential. Additionally, we studied CD8 T cell effector functions (interferon-gamma, TNF alpha, IL-2 and CD107) and parameters of CD8 T cell activation (CD38 and HLA-DR) and exhaustion (PD-1 and LAG-3) by flow cytometry. Plasma inflammation markers analyzed here were IL-6, IL-8, soluble CD14, highly sensitive CRP, and cystatin C. Results Coincubation experiments with isolated PMN-MDSCs led to a significant inhibition of CD8 T cell proliferation (p < 0.0001), with a significant correlation between PMN-MDSC frequency and suppressive capacity: the higher the frequency of PMN-MDSCs was, the lower the suppressive capacity (rho = 0.51, p = 0.0082). Stratifying all study subjects into subgroups with PMN-MDSC frequencies above or below 2.5% resulted in a significantly increased suppressive capacity in patients with frequencies below 2.5% (p = 0.021). While there was no correlation with the cellular activation markers CD38 and HLA-DR, high IL-8 levels were significantly associated with high PMN-MDSC frequencies (rho = 0.52, p = 0.0074) and low suppressive capacity (rho = 0.47, p = 0.019). Conclusions In this study, we demonstrate for the first time that PMN-MDSCs show limited effector functions in advanced disease stages of HIV infection. The hyperactive immune state is associated with this loss of function. However, we show an association with the proinflammatory cytokine IL-8, which is an important factor for the migration and adhesion of polymorphonuclear cells

    Gag-protease coevolution analyses define novel structural surfaces in the HIV-1 matrix and capsid involved in resistance to Protease Inhibitors

    Get PDF
    Despite the major role of Gag in establishing resistance of HIV-1 to protease inhibitors (PIs), very limited data are available on the total contribution of Gag residues to resistance to PIs. To identify in detail Gag residues and structural interfaces associated with the development of HIV-1 resistance to PIs, we traced viral evolution under the pressure of PIs using Gag-protease single genome sequencing and coevolution analysis of protein sequences in 4 patients treated with PIs over a 9-year period. We identified a total of 38 Gag residues correlated with the protease, 32 of which were outside Gag cleavage sites. These residues were distributed in 23 Gag-protease groups of coevolution, with the viral matrix and the capsid represented in 87% and 52% of the groups. In addition, we uncovered the distribution of Gag correlated residues in specific protein surfaces of the inner face of the viral matrix and at the Cyclophilin A binding loop of the capsid. In summary, our findings suggest a tight interdependency between Gag structural proteins and the protease during the development of resistance of HIV-1 to PIs

    Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus

    Get PDF
    The predictability of virus–host interactions and disease progression in rapidly evolving human viral infections has been difficult to assess because of host and genetic viral diversity. Here we examined adaptive HIV-specific cellular and humoral immune responses and viral evolution in adult monozygotic twins simultaneously infected with the same virus. CD4 T cell counts and viral loads followed similar trajectories over three years of follow up. The initial CD8 T cell response targeted 17 epitopes, 15 of which were identical in each twin, including two immunodominant responses. By 36 months after infection, 14 of 15 initial responses were still detectable in both, whereas all new responses were subdominant and remained so. Of four responses that declined in both twins, three demonstrated mutations at the same residue. In addition, the evolving antibody responses cross-neutralized the other twin's virus, with similar changes in the pattern of evolution in the envelope gene. These results reveal considerable concordance of adaptive cellular and humoral immune responses and HIV evolution in the same genetic environment, suggesting constraints on mutational pathways to HIV immune escape

    Treatment intensification in HIV-infected Patients is associated With reduced Frequencies of regulatory T cells

    Get PDF
    In untreated HIV infection, the efficacy of T cell responses decreases over the disease course, resulting in disease progression. The reasons for this development are not completely understood. However, immunosuppressive cells are supposedly crucially involved. Treatment strategies to avoid the induction of these cells preserve immune functions and are therefore the object of intense research efforts. In this study, we assessed the effect of treatment intensification [= 5-drug antiretroviral therapy (ART)] on the development of suppressive cell subsets. The New Era (NE) study recruited patients with primary HIV infection (PHI) or chronically HIV-infected patients with conventional ART (CHI) and applied an intensified 5-drug regimen containing maraviroc and raltegravir for several years. We compared the frequencies of the immune suppressive cells, namely, the myeloid-derived suppressor cells (MDSCs), regulatory B cells (Bregs), and regulatory T cells (Tregs), of the treatment intensification patients to the control groups, especially to the patients with conventional 3-drug ART, and analyzed the Gag/Nef-specific CD8 T cell responses. There were no differences between PHI and CHI in the NE population (p > 0.11) for any of the studied cell types. Polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC), monocytic myeloid-derived suppressor cell (M-MDSC), and the Breg frequencies were comparable to those of patients with a 3-drug ART. However, the Treg levels were significantly lower in the NE patients than those in 3ART-treated individuals and other control groups (p = 0.0033). The Gag/Nef-specific CD8 T cell response was broader (p = 0.0134) with a higher magnitude (p = 0.026) in the NE population than that in the patients with conventional ART. However, we did not find a correlation between the frequency of the immune suppressive cells and the interferon-gamma+ CD8 T cell response. In the treatment intensification subjects, the frequencies of the immune suppressive cells were comparable or lower than those of the conventional ART-treated subjects, with surprisingly broad HIV-specific CD8 T cell responses, suggesting a preservation of immune function with the applied treatment regimen. Interestingly, these effects were seen in both treatment intensification subpopulations and were not attributed to the start of treatment in primary infection
    corecore