26 research outputs found
Higher Anxiety Is Associated with Lower Cardiovascular Autonomic Function in Female Twins
Anxiety symptoms co-occur with cardiovascular health problems, with increasing evidence suggesting the role of autonomic dysfunction. Yet, there is limited behavior genetic research on underlying mechanisms. In this twin study, we investigated the phenotypic, genetic and environmental associations between a latent anxiety factor and three cardiovascular autonomic function factors: interbeat interval (IBI, time between heart beats), heart rate variability (HRV, overall fluctuation of heart-beat intervals) and baroreflex sensitivity (BRS, efficiency in regulating blood pressure [BP]). Multivariate twin models were fit using data of female twins (N = 250) of the Twin Interdisciplinary Neuroticism Study (TWINS). A significant negative association was identified between latent anxiety and BRS factors (r = -.24, 95% CI [-.40, -.07]). Findings suggest that this relationship was mostly explained by correlated shared environmental influences, and there was no evidence for pleiotropic genetic or unique environmental effects. We also identified negative relationships between anxiety symptoms and HRV (r = -.17, 95% CI [-.34, .00]) and IBI factors (r = -.13, 95% CI [-.29, .04]), though these associations did not reach statistical significance. Findings implicate that higher anxiety scores are associated with decreased efficiency in short-term BP regulation, providing support for autonomic dysfunction with anxiety symptomatology. The baroreflex system may be a key mechanism underlying the anxiety-cardiovascular health relationship
Genetics of co-developing conduct and emotional problems during childhood and adolescence
Common genetic influences offer a partial explanation for comorbidity between different psychiatric disorders1,2,3. However, the genetics underlying co-development—the cross-domain co-occurrence of patterns of change over time—of psychiatric symptoms during childhood and adolescence has not been well explored. Here, we show genetic influence on joint symptom trajectories of parent-reported conduct and emotional problems (overall N = 15,082) across development (4–16 years) using both twin- and genome-wide polygenic score analyses (genotyped N = 2,610). Specifically, we found seven joint symptom trajectories, including two characterized by jointly stable and jointly increasing symptoms of conduct and emotional problems, respectively (7.3% of the sample, collectively). Twin modelling analyses revealed substantial genetic influence on trajectories (heritability estimates range of 0.41–0.78). Furthermore, individuals’ risk of being classified in the most symptomatic trajectory classes was significantly predicted by polygenic scores for years-of-education-associated alleles and depressive symptoms-associated alleles. Complementary analyses of child self-reported symptoms across late childhood and early adolescence yielded broadly similar results. Taken together, our results indicate that genetic factors are involved in the co-development of conduct and emotional problems across childhood and adolescence, and that individuals with co-developing symptoms across multiple domains may represent a clinical subgroup characterized by increased levels of genetic risk
Pak Sham is Professor of Psychiatric and Statistical Genetics at the Institute of Psychiatry, King’s
works on the development of statistical methods and computer software for genemapping in quantitative traits and the development of structural equation models for (selected) family and twin data
Application of hierarchical genetic models to Raven and WAIS subtests: A Dutch twin study
The relationships between dimensions of cognitive functioning such as verbal and perceptual processing and memory capacity have been a major focus of interes
The Twin Interdisciplinary Neuroticism Study
<p>The Twin Interdisciplinary Neuroticism Study (TWINS) is a three-wave study including >800 twin pairs from the northern part of the Netherlands. The aim of the study is to unravel why neuroticism reflects vulnerability to mental disorders. In this study, we focus on possible mechanisms underlying this vulnerability and their genetic and environmental origins. In total, 125 female twin pairs visited our psychophysiological laboratory. From these twin pairs DNA was isolated and both candidate gene and genome-wide genotyping were conducted. Future work includes studies of candidate genes. The study also participates in several metagenome-wide association study (GWAS) consortia.</p>
The relationship between neuroticism and inflammatory markers:A twin study
Introduction: Neuroticism is an important marker of vulnerability for both mental and physical disorders. Its link with multiple etiological pathways has been studied before. Inflammatory markers have been demonstrated to predict similar mental and physical disorders as neuroticism. However, currently no study has focused on the shared genetic background of neuroticism and inflammatory markers. In the present study we will focus on the phenotypic and genetic relationship between neuroticism and three commonly used inflammatory markers: C-reactive protein (CRP), fibrinogen and Immunoglobulin-G (IgG). Material and Methods: The study was conducted in 125 Dutch female twin pairs. For each participant, four different neuroticism scores were available to calculate a neuroticism composite score that was used in the statistical analyses. Blood samples for inflammatory marker determination were taken after an overnight fast. Heritabilities, phenotypic and genetic correlations were estimated using bivariate structural equation modeling. Results: Heritabilities are fair for neuroticism (0.55), CRP (0.52) and fibrinogen (0.67) and moderate for IgG (0.43). No significant phenotypic or genetic correlations were found between neuroticism and the inflammatory markers. Interaction models yielded no moderation of the genetic and environmental pathways in the regulation of inflammatory markers by neuroticism. Conclusion: Substantial heritabilities were observed for all variables. No evidence was found for significant shared (or moderation of) genetic or environmental pathways underlying neuroticism and inflammatory status
Genetic influences on the cognitive biases associated with anxiety and depression symptoms in adolescents
Background
There is a substantial overlap between genes affecting anxiety and depression. Both anxiety and depression are associated with cognitive biases such as anxiety sensitivity and attributional style. Little, however, is known about the relationship between these variables and whether these too are genetically correlated.
Methods
Self-reports of anxiety sensitivity, anxiety symptoms, attributional style and depression symptoms were obtained for over 1300 adolescent twin and sibling pairs at two time points. The magnitude of genetic and environmental influences on the measures was examined.
Results
Strongest associations were found between anxiety sensitivity and anxiety ratings at both measurement times (r = .70, .72) and between anxiety and depression (r = .62 at both time points). Correlations between the cognitive biases were modest at time 1 (r = − .12) and slightly larger at time 2 (r = − .31). All measures showed moderate genetic influence. Generally genetic correlations reflected phenotypic correlations. Thus the highest genetic correlations were between anxiety sensitivity and anxiety ratings (.86, .87) and between anxiety and depression ratings (.77, .71). Interestingly, depression ratings also showed a high genetic correlation with anxiety sensitivity (.70, .76). Genetic correlations between the cognitive bias measures were moderate (− .31, − .46).
Limitations
The sample consists primarily of twins, there are limitations associated with the twin design.
Conclusions
Cognitive biases associated with depression and anxiety are not as genetically correlated as anxiety and depression ratings themselves. Further research into the cognitive processes related to anxiety and depression will facilitate understanding of the relationship between bias and symptoms
Genetic origin of the relationship between parental negativity and behavior problems from early childhood to adolescence : a longitudinal genetically sensitive study
Little is known about how genetic and environmental factors contribute to the association between parental negativity and behavior problems from early childhood to adolescence. The current study fitted a cross-lagged model in a sample consisting of 4,075 twin pairs to explore (a) the role of genetic and environmental factors in the relationship between parental negativity and behavior problems from age 4 to age 12, (b) whether parent-driven and child-driven processes independently explain the association, and (c) whether there are sex differences in this relationship. Both phenotypes showed substantial genetic influence at both ages. The concurrent overlap between them was mainly accounted for by genetic factors. Causal pathways representing stability of the phenotypes and parent-driven and child-driven effects significantly and independently account for the association. Significant but slight differences were found between males and females for parent-driven effects. These results were highly similar when general cognitive ability was added as a covariate. In summary, the longitudinal association between parental negativity and behavior problems seems to be bidirectional and mainly accounted for by genetic factors. Furthermore, child-driven effects were mainly genetically mediated, and parent-driven effects were a function of both genetic and shared-environmental factors